(12分)已知函數(shù),,
若函數(shù)在(0,4)上為單調(diào)函數(shù),求的取值范圍.
解:
要使在(0,4)上單調(diào),
在(0,4)上恒成立。
在(0,4)上恒成立在(0,4)上恒成立.
必有
在(0,4)上恒成立
                             
綜上,所求的取值范圍為,或,或
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(Ⅰ)設(shè)函數(shù),求的最小值;
(Ⅱ)設(shè)正數(shù)滿足,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)
線的斜率是-5。
(Ⅰ)求實(shí)數(shù)b、c的值;
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知函數(shù)).
(Ⅰ)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;
(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,試求a的取值范圍.
注:e為自然對(duì)數(shù)的底數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若,在(1,2)上為單調(diào)遞
減函數(shù)。求實(shí)數(shù)a的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)的圖象為曲線, 函數(shù)的圖象為直線.
(Ⅰ) 當(dāng)時(shí), 求的最大值;
(Ⅱ) 設(shè)直線與曲線的交點(diǎn)的橫坐標(biāo)分別為, 且,
求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的最大值;
(Ⅱ)當(dāng)時(shí),曲線在點(diǎn)處的切線有且只有一個(gè)公共  
點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.設(shè)函數(shù)f(x)=x3+x2+tanθ,其中θ∈[0,],則導(dǎo)數(shù)的取值范圍是( ▲ )
A.[-2,2]B.[,]C.[,2]D.[,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案