如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,且AB=AD=PD=1,CD=2,E為PC的中點.
(1)求證:BE∥平面PAD;
(2)求二面角E-BD-C的余弦值.
(1)詳見解析;(2).
解析試題分析:(1)要想證明線面平行,由線面平行的判定定理可知:只需證明此直線與平面內(nèi)的某一直線平行即可,考慮到E為PC的中點,所以取中點為,連接和AF;然后利用三角形的中位線的性質(zhì)及空間中平行線的傳遞性可證BE//AF,再注意BE在平面PAD外,而AF在平面PAD內(nèi),從而可證BE∥平面PAD;(2)由已知可知直線DA、DC、DP兩兩互相垂直,所以我們可以為原點,所在直線為軸建立空間直角坐標系.從而由已知就可寫出點P、C、A、B的坐標.進而因為E是PC的中點,求出E的坐標,然后就可寫出平面BDE內(nèi)不共線的兩個向量的坐標,如,再設出平面BDE的一個法向量為,利用可求出平面BDE的一個法向量;而平面BDC的一個法向量顯然為:,從而利用兩法向量的夾角公式:就可求得所求二面角的余弦值.
試題解析:(1)證明:令中點為,連接, 1分
點分別是的中點,
,.
四邊形為平行四邊形. 2分
,平面,
平面 4分
(三個條件少寫一個不得該步驟分)
5分
(2)以為原點,所在直線為軸建立空間直角坐標系(如圖).
則.
因為E是PC的中點,所以E的坐標為 6分
設平面DBE的一個法向量為,而
則令則所以 9分
而平面DBC的一個法向量可為
故 12分
所以二面角E-BD-C的余弦值為。 13分
考點:1.線面平行;2.二面角.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在棱長為a的正方體ABCD-A1B1C1D1中,G為△BC1D的重心,
(1)求證:A1、G、C三點共線;
(2)求證:A1C⊥平面BC1D;
(3)求點C到平面BC1D的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com