【題目】已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)求證:BD⊥AE
(2)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題(1)要證明線線垂直,先證明線面垂直,所以觀察幾何體,先證明平面,而要證明線面垂直,先證明線與平面內(nèi)的兩條相交直線垂直,即證明,;
(2)法一,幾何法,觀察,所以可選擇在平面DAE內(nèi)過(guò)點(diǎn)D作DF⊥AE于F,連結(jié)BF,∠DFB為二面角D-AE-B的平面角,或法二,采用空間向量的方法,以點(diǎn)C為原點(diǎn),CD,CB,CP所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系,分別求兩個(gè)平面的法向量,或.
試題解析:(1)由三視圖可知,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,
側(cè)棱PC⊥底面ABCD,且PC=2.
連結(jié)AC,∵ABCD是正方形, ∴BD⊥AC.
∵PC⊥底面ABCD,且BD平面ABCD, ∴BD⊥PC.
又∵AC∩PC=C,∴BD⊥平面PAC.
∵AE平面PAC. ∴BD⊥AE.
(2)解法1:在平面DAE內(nèi)過(guò)點(diǎn)D作DF⊥AE于F,連結(jié)BF.
∵AD=AB=1,DE=BE=,AE=AE=,
∴Rt△ADE≌Rt△ABE,
從而△ADF≌△ABF,∴BF⊥AE.
∴∠DFB為二面角D-AE-B的平面角.
在Rt△ADE中,DF=, ∴.
又BD=,在△DFB中,由余弦定理得
cos∠DFB=,
∴∠DFB=,即二面角D-AE-B的大小為
解法2:如圖,以點(diǎn)C為原點(diǎn),CD,CB,CP所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系.則D(1,0,0),A(1,1,0),B(0,1,0),E(0,0,1),
從而=(0,1,0),=(-1,0,1),=(1,0,0),=(0,-1,1).[Z#x設(shè)平面ADE和平面ABE的法向量分別為,
由,取
由,取
設(shè)二面角D-AE-B的平面角為θ,則,
∴θ=,即二面角D-AE-B的大小為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),().
(i)求的取值范圍;
(ii)求證:隨著的增大而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和滿足;數(shù)列是等比數(shù)列,前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知等比數(shù)列滿足,,,求數(shù)列前項(xiàng)和為;
(3)若,且等比數(shù)列的公比,若存在,使得,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,過(guò)焦點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)已知點(diǎn),,過(guò)點(diǎn)的任意一條直線與橢圓交于,兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,恒有成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域是一切實(shí)數(shù)的函數(shù),其圖像是連續(xù)不斷的,且存在常數(shù)使得對(duì)任意實(shí)數(shù)都成立,則稱是一個(gè)“—伴隨函數(shù)”.有下列關(guān)于—伴隨函數(shù)”的結(jié)論:
①是常數(shù)函數(shù)中唯一一個(gè)“—伴隨函數(shù)”;②“—伴隨函數(shù)”至少有一個(gè)零點(diǎn);
③是一個(gè)—伴隨函數(shù)”;其中正確的是( )
A.①B.②C.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)P在橢圓C上,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)定點(diǎn)T(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com