已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x2,若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個零點,則實數(shù)k的取值范圍是( )
A. | B. |
C. | D. |
C
解析試題分析:根據(jù)f(x+1)=﹣f(x),可得f(x)是周期為2的周期函數(shù). 再由f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x2,可得函數(shù)在[﹣1,3]上的解析式.根據(jù)題意可得
函數(shù)y=f(x)的圖象與直線y="kx+k" 有4個交點,數(shù)形結(jié)合可得實數(shù)k的取值范圍.
∵函數(shù)f(x)滿足f(x+1)=﹣f(x),故有f(x+2)=f(x),故f(x)是周期為2的周期函數(shù).再由f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x2,
可得當x∈[﹣1,0]時,f(x)=x2,故當x∈[﹣1,1]時,f(x)=x2,當x∈[1,3]時,f(x)=(x﹣2)2.
由于函數(shù)g(x)=f(x)﹣kx﹣k有4個零點,故函數(shù)y=f(x)的圖象與直線y="kx+k" 有4個交點,如圖所示:
把點(3,1)代入y=kx+k,可得k=,數(shù)形結(jié)合可得實數(shù)k的取值范圍是 (0,],
故選C.
考點:根的存在性及根的個數(shù)判斷
點評:本題主要考查函數(shù)的周期性的應(yīng)用,函數(shù)的零點與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學思想,屬于基礎(chǔ)題
科目:高中數(shù)學 來源: 題型:單選題
設(shè)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖像,則+=( )
A.3 | B.2 | C.1 | D.0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
已知定義域在上的奇函數(shù)是減函數(shù),且,則的取值范圍是( )
A.(2,3) | B.(3,) | C.(2,4) | D.(-2,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com