如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
3
,AD=CD=1.
(1)求證:BD⊥AA1;
(2)在棱BC上取一點(diǎn)E,使得AE平面DCC1D1,求
BE
EC
的值.
(1)證明:在四邊形ABCD中,因?yàn)锽A=BC,DA=DC,所以BD⊥AC.
因?yàn)槠矫鍭A1C1C⊥平面ABCD,且平面AA1C1C∩平面ABCD=AC,BD?平面ABCD,
所以BD⊥平面AA1C1C,
因?yàn)锳A1?平面AA1C1C,
所以BD⊥AA1
(2)點(diǎn)E為BC中點(diǎn),即
BE
EC
=1,
下面給予證明:在三角形ABC中,因?yàn)锳B=AC,E為BC中點(diǎn),所以AE⊥BC,
又在四邊形ABCD中,AB=BC=CA=
3
,DA=DC=1,所以∠ACB=60°,∠ACD=30°,
所以DC⊥BC,即平面ABCD中有,AEDC.
因?yàn)镈C?平面DCC1D1,AE?平面DCC1D1,
所以AE平面DCC1D1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),
求證:
(1)PC平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖甲,在等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC上的點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到如圖乙所示的三棱錐A-BCF,證明:DE平面BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正四面體PABC中,D,E,F(xiàn)分別是棱AB,BC,CA的中點(diǎn).給出下面四個(gè)結(jié)論:
①BC平面PDF;②DF⊥平面PAE;③平面PDF⊥平面ABC;④平面PAE⊥平面ABC,
其中所有不正確的結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,與平面AA1D1D平行的平面是______;與平面A1B1C1D1平行的平面是______,與平面BDD1B1平行的棱有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐S-ABCD中,底面ABCD為平行四邊形,E是SA上一點(diǎn),試探求點(diǎn)E的位置,使SC平面EBD,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)求證:BE平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(1)求證:EF平面ABC1D1;
(2)求證:EF⊥B1C;
(3)求三棱錐VB1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知矩形ABCD中AB=3,BC=a,若PA⊥平面AC,在BC邊上取點(diǎn)E,使PE⊥DE,則滿(mǎn)足條件的E點(diǎn)有兩個(gè)時(shí),a的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案