【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2-x+16a)的定義域為R;命題q:不等式3x-9x<a對任意x∈R恒成立.
(1)如果p是真命題,求實數(shù)a的取值范圍;
(2)如果命題“p或q”為真命題且“p且q”為假命題,求實數(shù)a的取值范圍.
【答案】(1).(2).
【解析】
(1)命題p是真命題,有a>0,△<0,即求解即可.
(2)命題q是真命題,不等式3x-9x<a對一切x∈R均成立,設(shè)y=3x-9x,令t=3x>0,則y=t-t2,t>0,通過函數(shù)的最值求解a的范圍,利用復(fù)合命題的真假關(guān)系求解即可.
解:(1)命題p是真命題,則ax2-x+16a>0恒成立,得到a>0,△=1-64a2<0,即a>,或a(舍去),所以a的取值范圍為.
(2)命題q是真命題,不等式3x-9x<a對一切x∈R均成立,
設(shè)y=3x-9x,令t=3x>0,則y=t-t2,t>0,
當(dāng)時,,所以.
命題“p∨q”為真命題,“p∧q”為假命題,則p,q一真一假.
即有或,
綜上,實數(shù)a的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,,若,().
(1)求函數(shù)的解析式;
(2)求函數(shù)在條件下的最小值;
(3)把的圖像按向量平移得到曲線,過坐標(biāo)原點作、分別交曲線于點、,直線交軸于點,當(dāng)為銳角時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:
定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=21ny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù):,,
,)
(Ⅰ)根據(jù)散點圖判斷,y與x和z與x哪一對具有的線性相關(guān)性較強(給出判斷即可,不必說明理由)?
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心在軸的正半軸上,與軸相交于點,且直線被圓截得的弦長為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓交于兩點,那么以為直徑的圓能否經(jīng)過原點,若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為菱形且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=,E為PC的中點.
(1)求直線DE與平面PAC所成角的大小;
(2)求二面角E-AD-C平面角的正切值;
(3)在線段PC上是否存在一點M,使PC⊥平面MBD成立.如果存在,求出MC的長;如果不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,B(-1,0),C(1,0),AB=6,點P在AB上,且∠BAC=∠PCA.
(1)求點P的軌跡E的方程;
(2)若,過點C的直線與E交于M,N兩點,與直線x=9交于點K,記QM,QN,QK的斜率分別為k1,k2,k3,試探究k1,k2,k3的關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,∠ABC=,D是棱AC的中點,且AB=BC=BB1=2.
(1)求證:AB1∥平面BC1D;
(2)求異面直線AB1與BC1的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農(nóng)家樂”跟蹤調(diào)查了天.得到的統(tǒng)計數(shù)據(jù)如下表,為收費標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費標(biāo)準(zhǔn)與“入住率”的散點圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農(nóng)家樂”中隨機抽取兩家深入調(diào)查,記為“入住率”超過的農(nóng)家樂的個數(shù),求的概率分布列;
(2)令,由散點圖判斷與哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))
(3)若一年按天計算,試估計收費標(biāo)準(zhǔn)為多少時,年銷售額最大?(年銷售額入住率收費標(biāo)準(zhǔn))
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是平面內(nèi)互不平行的三個向量,,有下列命題:
①方程不可能有兩個不同的實數(shù)解;
②方程有實數(shù)解的充要條件是;
③方程有唯一的實數(shù)解;
④方程沒有實數(shù)解.
其中真命題有 .(寫出所有真命題的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com