【題目】已知函數(shù)f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對(duì)稱點(diǎn).
(1)若a,b,c∈R,證明函數(shù)f(x)=ax3+bx2+cx﹣b必有局部對(duì)稱點(diǎn);
(2)是否存在常數(shù)m,使得函數(shù)f(x)=4x﹣m2x+1+m2﹣3有局部對(duì)稱點(diǎn)?若存在,求出m的范圍,否則說(shuō)明理由.
【答案】解:(1)證明:由f(x)=ax3+bx2+cx﹣b得f(﹣x)=﹣ax3+bx2﹣cx﹣b,
代入f(﹣x)=﹣f(x) 得ax3+bx2+cx﹣b﹣ax3+bx2﹣cx﹣b=0得到關(guān)于x的方程2bx2﹣2b=0,b≠0時(shí),x=±1
當(dāng)b=0,x∈R等式恒成立,
所以函數(shù)f(x)=ax3+bx2+cx﹣b必有局部對(duì)稱點(diǎn);
(2)∵f(x)=4x﹣m2x+1+m2﹣3
∴f(﹣x)=4﹣x﹣m2﹣x+1+m2﹣3,
由f(﹣x)=﹣f(x),∴4﹣x﹣m2﹣x+1+m2﹣3=﹣(4x﹣m2x+1+m2﹣3),
于是 4x+4﹣x﹣2m(2x+2﹣x)+2(m2﹣3)=0…(*)在R上有解,
令t=2x+2﹣x(t≥2),則4x+4﹣x=t2﹣2,
∴方程(*)變?yōu)閠2﹣2mt+2m2﹣8=0 在區(qū)間[2,+∞)內(nèi)有解,需滿足條件:
,解得,
化簡(jiǎn)得≤m≤2.
【解析】(1)根據(jù)定義構(gòu)造方程,再判斷方程是否有解,問(wèn)題得以解決.
(2)根據(jù)定義構(gòu)造方程4x+4﹣x﹣2m(2x+2﹣x)+2(m2﹣3)=0…(*)在R上有解,再利用換元法,設(shè)t=2x+2﹣x , 方程變形為t2﹣2mt+2m2﹣8=0 在區(qū)間[2,+∞)內(nèi)有解,再根據(jù)判別式求出m的范圍即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD= , AB=2,CD=3,M為PC上一點(diǎn),PM=2MC.
(Ⅰ)證明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求二面角D﹣MB﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓F1:(x+1)2+y2=1,圓F2:(x﹣1)2+y2=25,動(dòng)圓P與圓F1外切并且與圓F2內(nèi)切,動(dòng)圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若曲線C與x軸的交點(diǎn)為A1 , A2 , 點(diǎn)M是曲線C上異于點(diǎn)A1 , A2的點(diǎn),直線A1M與A2M的斜率分別為k1 , k2 , 求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是_____________ .(填序號(hào))
①棱柱的面中,至少有兩個(gè)面互相平行;
②以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐;
③用一個(gè)平面去截圓錐,得到一個(gè)圓錐和一個(gè)圓臺(tái);
④有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱;
⑤圓錐的頂點(diǎn)與底面圓周上任意一點(diǎn)的連線是圓錐的母線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京101中學(xué)校園內(nèi)有一個(gè)“少年湖”,湖的兩側(cè)有一個(gè)音樂教室和一個(gè)圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測(cè)量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測(cè)量的數(shù)據(jù)的不同方案:①測(cè)量∠A,AC,BC;②測(cè)量∠A,∠B,BC;③測(cè)量∠C,AC,BC;④測(cè)量∠A,∠C,∠B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=的圖象與函數(shù)y=2sinπx(﹣2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐A﹣BCD中,側(cè)棱AB、AC、AD兩兩垂直,△ABC,△ACD,△ADB的面積分別為 , , , 則三棱錐A﹣BCD的外接球的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過(guò)點(diǎn)P(1,2),傾斜角α= .
(Ⅰ)寫出圓C的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與圓C相交于A、B兩點(diǎn),求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(﹣mx2+2x﹣m)的定義域?yàn)镽;
命題q:函數(shù)g(x)=4lnx+ ﹣(m﹣1)x的圖象上任意一點(diǎn)處的切線斜率恒大于2,
若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com