【題目】如圖,兩個橢圓, 內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點,給出下列四個判斷:

①PF1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點的距離之和為定值;

②曲線C關(guān)于直線y=x、y=-x均對稱;③曲線C所圍區(qū)域面積必小于36.

④曲線C總長度不大于6π.上述判斷中正確命題的序號為________________

【答案】②③

【解析】對于①,考慮點P不是交點的情況,若點P在橢圓 上,PF1(﹣4,0)、F2(4,0)兩點的距離之和為定值10、到E1(0,﹣4)、E2(0,4)兩點的距離之和不為定值,故錯;

對于②,兩個橢圓關(guān)于直線y=x、y=﹣x均對稱,曲線C關(guān)于直線y=x、y=﹣x均對稱,故正確;

對于③,曲線C所圍區(qū)域在邊長為6的正方形內(nèi)部,所以面積必小于36,故正確;

對于④,曲線C所圍區(qū)域在半徑為3的圓外部,所以曲線的總長度大于圓的周長:,故錯誤;

綜上可得:上述判斷中正確命題的序號為②③

故答案為:②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)是定義在a,b上的增函數(shù),其中a,b∈R且0<b<﹣a,已知y=f(x)無零點,設(shè)函數(shù)F(x)=f2(x)+f2(﹣x),則對于F(x)有以下四個說法:
①定義域是[﹣b,b];②是偶函數(shù);③最小值是0;④在定義域內(nèi)單調(diào)遞增.
其中正確的有(填入你認(rèn)為正確的所有序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點, 的四個頂點構(gòu)成的四邊形面積為.

(1)求橢圓的方程;

(2)在橢圓上是否存在相異兩點,使其滿足:①直線與直線的斜率互為相反數(shù);②線段的中點在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點 P(2,2)的直線m與曲線C交于A,B兩點,設(shè)當(dāng)△AOB的面積為4時(O為坐標(biāo)原點),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線E:x2=2py(p>0) 的焦點F作斜率分別為 k1,k2 的兩條不同的直線 l1,l2 ,且k1+k2=2 ,l1與E 相交于點A,B, l2與E 相交于點C,D.以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為 l .
(1)若k1>0,k2>0 ,證明;
(2)若點M到直線 l 的距離的最小值為 ,求拋物線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 的兩個焦點分別為F1、F2離心率e=2.
(1)求此雙曲線的漸近線l1、l2的方程;
(2)若A、B分別為l1、l2上的點,且 求線段AB的中點M的軌跡方程.
(3)過點N(1,0)能否作直線l , 使l與雙曲線交于不同兩點P、Q.且 ,若存在,求直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知BC是兩個定點,|BC|=8,且△ABC的周長等于18,求這個三角形的頂點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,與函數(shù)y=2x表示同一函數(shù)的是(
A.y=
B.y=
C.y=( 2
D.y=log24x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時,,若函數(shù)恰有一個零點,則實數(shù)的取值集合是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案