如圖A1A是圓柱的母線,AB是圓柱底面圓的直徑,C是底面圓周上異于A、B的任一點(diǎn),AA1=AB=2
⑴求證:BC⊥平面A1AC
⑵求三棱錐A1—ABC體積的最大值
(1)見解析;(2).
(1)關(guān)鍵是即可.
(2)由于三棱錐A1—ABC的高等于2,底面積最大時(shí),體積最大,因?yàn)锳B=2,所以當(dāng)點(diǎn)C到直線AB的距離最大時(shí),即點(diǎn)C到AB的距離等于半徑時(shí),體積最大..
證明: (1)提示:關(guān)鍵是即可.
解:(2)由于三棱錐A1—ABC的高等于2,底面積最大時(shí),體積最大,因?yàn)锳B=2,所以當(dāng)點(diǎn)C到直線AB的距離最大時(shí),即點(diǎn)C到AB的距離等于半徑時(shí),體積最大..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,側(cè)面內(nèi)有一動(dòng)點(diǎn)到直線與直線的距離相等,則動(dòng)點(diǎn)的軌跡為一段 (  )
A.圓弧B.雙曲線弧C.橢圓弧D.拋物線弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,半徑為的半球的底面圓在平面內(nèi),過點(diǎn)作平面的垂線交半球面于點(diǎn),過圓的直徑作平面角的平面與半球面相交,所得交線上到平面的距離最大的點(diǎn)為,該交線上的一點(diǎn)滿足,則、兩點(diǎn)間的球面距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知三棱柱的側(cè)棱與底面垂直,⊥AC,M是的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在直線 上,且滿足.
(1)當(dāng)取何值時(shí),直線PN與平面ABC所成的角最大?
(2)若平面PMN與平面ABC所成的二面角為,試確定點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三棱錐V-ABC中,VA=VB=AC=BC=3,AB=2,VC=7,畫出二面角V-AB-C的平面角,并求它的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體中,二面角的正切值為       ___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱長(zhǎng)為1的正方體中,若點(diǎn)是棱上一點(diǎn),則滿足的點(diǎn)的個(gè)數(shù)為 
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明 PA//平面EDB;
(2)證明PB⊥平面EFD;
(3)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)圓錐的側(cè)面展開圖是半徑為,圓心角為的扇形,則圓錐的底面圓半徑是             

查看答案和解析>>

同步練習(xí)冊(cè)答案