精英家教網 > 高中數學 > 題目詳情
等差數列{an}、{bn}的前n項和分別為SnTn,若=,則等于

A.1                              B.                          C.                                   D.

解析:設等差數列{an}、{bn}的首項分別為a1、b1,公差為d1d2,則an=a1+(n-1)d1bn=b1+(n-1)d2,

==.

=,∴=,= = =.

答案:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設Sn是等差數列{an}的前n項和,S7=3(a2+a12),則
a7
a4
的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an},其中a1=
13
,a2+a5=4,an=33
,則n的值為
50
50

查看答案和解析>>

科目:高中數學 來源: 題型:

在等差數列{an}中,若a3=4,a9=16,則此等差數列的公差d=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在等差數列{an}中,a1=8,a3=4.
(1)求數列{an}的通項公式;
(2)設Sn=|a1|+|a2|+…+|an|,求Sn;
(3)設bn=
1n(12-an)
( n∈N*),求Tn=b1+b2+…+bn( n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

等差數列{an}的前n項和Sn滿足S20=S40,下列結論中一定正確的是( 。

查看答案和解析>>

同步練習冊答案