【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)在直線l:上.
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)若直線l與曲線C的相交于點(diǎn)A、B,求的值.
【答案】(1) C:;l:;(2)
【解析】
(1)直接把曲線C的參數(shù)方程中的參數(shù)消去,即可得到曲線C的普通方程,把P的極坐標(biāo)代入直線方程求得m,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得直線l的直角坐標(biāo)方程;
(2)寫出直線l的參數(shù)方程,把直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,化為關(guān)于t的一元二次方程,利用此時(shí)t的幾何意義及根與系數(shù)的關(guān)系求解.
(1)由為參數(shù)),消去參數(shù)α,可得曲線C的普通方程為;
由在直線l:ρcosθ﹣ρsinθ+m=0上,得,得m.
由,,
∴直線l:ρcosθ﹣ρsinθ+m=0的直角坐標(biāo)方程為x﹣y0;
(2)由(1)知直線l的傾斜角為,,
直線l的參數(shù)方程為(t為參數(shù)),
代入,
得:13t2﹣20t﹣20=0.
∴|PA||PB|.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線,,C與l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:與圓M:的一個(gè)公共點(diǎn)為.
(1)求橢圓C的方程;
(2)過點(diǎn)M的直線l與橢圓C交于A、B兩點(diǎn),且A是線段MB的中點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)在直線l:上.
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)若直線l與曲線C的相交于點(diǎn)A、B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源分時(shí)租賃汽車”.其中一款新能源分時(shí)租賃汽車,每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程數(shù)按1元/公里計(jì)費(fèi);②行駛時(shí)間不超過分時(shí),按元/分計(jì)費(fèi);超過分時(shí),超出部分按元/分計(jì)費(fèi).已知王先生家離上班地點(diǎn)15公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費(fèi)的時(shí)間(分)是一個(gè)隨機(jī)變量.現(xiàn)統(tǒng)計(jì)了50次路上開車花費(fèi)時(shí)間,在各時(shí)間段內(nèi)的頻數(shù)分布情況如下表所示:
時(shí)間(分) | ||||
頻數(shù) | 2 | 18 | 20 | 10 |
將各時(shí)間段發(fā)生的頻率視為概率,每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分.
(1)寫出王先生一次租車費(fèi)用(元)與用車時(shí)間(分)的函數(shù)關(guān)系式;
(2)若王先生一次開車時(shí)間不超過40分為“路段暢通”,設(shè)表示3次租用新能源分時(shí)租賃汽車中“路段暢通”的次數(shù),求的分布列和期望;
(3)若公司每月給1000元的車補(bǔ),請(qǐng)估計(jì)王先生每月(按22天計(jì)算)的車補(bǔ)是否足夠上、下班租用新能源分時(shí)租賃汽車?并說明理由.(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).
(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).
(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y與投資x成正比,其關(guān)系如圖甲,B產(chǎn)品的利潤(rùn)y與投資x的算術(shù)平方根成正比,其關(guān)系如圖乙注:利潤(rùn)與投資單位為萬元
分別將A,B兩種產(chǎn)品的利潤(rùn)y表示為投資x的函數(shù)關(guān)系式;
該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn)問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤(rùn),最大利潤(rùn)是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)的影響,詢問了30名同學(xué),得到如下的列聯(lián)表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?
(Ⅱ)從使用智能手機(jī)的20名同學(xué)中,按分層抽樣的方法選出5名同學(xué),求所抽取的5名同學(xué)中“學(xué)習(xí)成績(jī)優(yōu)秀”和“學(xué)習(xí)成績(jī)不優(yōu)秀”的人數(shù);
(Ⅲ)從問題(Ⅱ)中被抽取的5名同學(xué),再隨機(jī)抽取3名同學(xué),試求抽取3名同學(xué)中恰有2名同學(xué)為“學(xué)習(xí)成績(jī)不優(yōu)秀”的概率.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com