【題目】已知橢圓的中心在坐標(biāo)原點,且經(jīng)過點,它的一個焦點與拋物線E的焦點重合,斜率為k的直線l交拋物線EA、B兩點,交橢圓CD兩點.

(1)求橢圓的方程;

(2)直線l經(jīng)過點,設(shè)點,且的面積為,求k的值;

(3)若直線l過點,設(shè)直線的斜率分別為,,且成等差數(shù)列,求直線l的方程.

【答案】(1)

(2)

(3)

【解析】

1)由題知得到,解方程組即可.

2)設(shè)直線,由得:.利用弦長公式和點到直線的距離公式即可得到,解方程即可.

3)設(shè)直線,帶入橢圓方程得到.根據(jù)韋達(dá)定理和等差中項的性質(zhì)得到,解方程即可求出直線方程.

(1)設(shè)橢圓的方程為

由題設(shè)得,∴.

∴橢圓的方程是.

(2)設(shè)直線,設(shè),

得:.

,.

與拋物線有兩個交點,,

.

的距離

,所以.

,故.

(3)設(shè)直線,設(shè),,

消去得:.

因為在橢圓內(nèi)部,所以與橢圓恒有兩個交點,

所以.

,成等差數(shù)列得.

.

所以解得:.

所以直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若動點到定點與定直線的距離之和為4.

1)求點的軌跡方程,并畫出方程的曲線草圖;

2)記(1)得到的軌跡為曲線,問曲線上關(guān)于點)對稱的不同點有幾對?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足.

1)求的通項公式;

2)若,數(shù)列滿足關(guān)系式,求證:數(shù)列的通項公式為;

3)設(shè)(2)中的數(shù)列的前n項和為,對任意的正整數(shù)n,恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的離心率為,過橢圓右焦點的直線與橢圓交于點(點在第一象限).

)求橢圓的方程;

)已知為橢圓的左頂點,平行于的直線與橢圓相交于兩點.判斷直線是否關(guān)于直線對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某沿海城市的海邊有兩條相互垂直的直線型公路、,海岸邊界近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道,且直線與曲線有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段是函數(shù)圖像的一段,點M、的距離分別為8千米和1千米,點N的距離為10千米,點P的距離為2千米.、分別為x,y軸建立如圖所示的平面直角坐標(biāo)系.

(1)求曲線段的函數(shù)關(guān)系式,并指出其定義域;

2)求直線的方程,并求出公路的長度(結(jié)果精確到1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在R上的兩個函數(shù),滿足, 滿足,且當(dāng)時,.若在區(qū)間上,關(guān)于的方程8個不同的實數(shù)根,則k的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在實數(shù)集上的偶函數(shù)和奇函數(shù)滿足.

1)求的解析式;

2)若定義在實數(shù)集上的以2為最小正周期的周期函數(shù),當(dāng)時,,試求在閉區(qū)間上的表達(dá)式,并證明在閉區(qū)間上單調(diào)遞減;

3)設(shè)(其中為常數(shù)),若對于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù),當(dāng)時,

則函數(shù)的所有零點之和為_____

查看答案和解析>>

同步練習(xí)冊答案