【題目】疫情過后,某商場開業(yè)一周累計(jì)生成2萬張購物單,從中隨機(jī)抽出100張,對(duì)每單消費(fèi)金額進(jìn)行統(tǒng)計(jì)得到下表:
消費(fèi)金額(單位:元) | |||||
購物單張數(shù) | 25 | 25 | 30 | ? | ? |
由于工作人員失誤,后兩欄數(shù)據(jù)已無法辨識(shí),但當(dāng)時(shí)記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計(jì)出的每單消費(fèi)額的中位數(shù)與平均數(shù)恰好相等(用頻率估計(jì)概率),完成下列問題:
(1)估計(jì)該商場開業(yè)一周累計(jì)生成的購物單中,單筆消費(fèi)額超過800元的購物單張數(shù);
(2)為鼓勵(lì)顧客消費(fèi),拉動(dòng)內(nèi)需,該商場打算在今年國慶期間進(jìn)行促銷活動(dòng),凡單筆消費(fèi)超過600元者,可抽獎(jiǎng)一次,中一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的顧客可以分別獲得價(jià)值元、元、元的獎(jiǎng)品.已知中獎(jiǎng)率為100%,且一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的中獎(jiǎng)率依次構(gòu)成等差數(shù)列,其中一等獎(jiǎng)的中獎(jiǎng)率為.若今年國慶期間該商場的購物單數(shù)量預(yù)計(jì)比疫情后開業(yè)一周的購物單數(shù)量增長5%,試預(yù)測商場今年國慶期間采辦獎(jiǎng)品的開銷.
【答案】(1)1000(張)(2)采購獎(jiǎng)品的開銷可估計(jì)為(元)
【解析】
(1)由中位數(shù)的定義,根據(jù)概率為,求得中位數(shù),設(shè)消費(fèi)在區(qū)間內(nèi)的概率為,根據(jù)中位數(shù)與平均數(shù)恰好相等解得即可.
(2)根據(jù)中獎(jiǎng)率為100%,且一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的中獎(jiǎng)率依次構(gòu)成等差數(shù)列,其中一等獎(jiǎng)的中獎(jiǎng)率為,設(shè)等差數(shù)列的公差為,由,解得,得到一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的中獎(jiǎng)率,再根據(jù)購物單數(shù)量增長5%,得到今年的購物具有抽獎(jiǎng)資格的單數(shù),從而得到一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)中獎(jiǎng)單數(shù),即可得到采購獎(jiǎng)品的開銷.
(1),
中位數(shù)為,
又
設(shè)消費(fèi)在區(qū)間內(nèi)的概率為,
則消費(fèi)在區(qū)間內(nèi)的概率為
由中位數(shù)與平均數(shù)恰好相等可知,,
解得,
故單筆消費(fèi)超過800元的購物單張數(shù)為:(張).
(2)設(shè)等差數(shù)列的公差為,
則,
解得,
故一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的中獎(jiǎng)率分別為
今年的購物具有抽獎(jiǎng)資格的單數(shù)約為,
故一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)中獎(jiǎng)單數(shù)可估計(jì)為,
采購獎(jiǎng)品的開銷可估計(jì)為(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張上班從家到公司開車有兩條線路,所需時(shí)間(分鐘)隨交通堵塞狀況有所變化,其概率分布如下表所示:
所需時(shí)間(分鐘) | 30 | 40 | 50 | 60 |
線路一 | 0.5 | 0.2 | 0.2 | 0.1 |
線路二 | 0.3 | 0.5 | 0.1 | 0.1 |
則下列說法正確的是( )
A.任選一條線路,“所需時(shí)間小于50分鐘”與“所需時(shí)間為60分鐘”是對(duì)立事件
B.從所需的平均時(shí)間看,線路一比線路二更節(jié)省時(shí)間
C.如果要求在45分鐘以內(nèi)從家趕到公司,小張應(yīng)該走線路一
D.若小張上、下班走不同線路,則所需時(shí)間之和大于100分鐘的概率為0.04
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),已知點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個(gè)方(梯)隊(duì)和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊(duì)15個(gè).為了保證閱兵式時(shí)隊(duì)列保持整齊,各個(gè)方隊(duì)對(duì)受閱隊(duì)員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊(duì)隊(duì)員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊(duì),其隊(duì)員的身高一般都在184cm至190cm之間.經(jīng)過隨機(jī)調(diào)查某個(gè)閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據(jù)直方圖得到P(C)的估計(jì)值為0.5.
(1)求直方圖中a,b的值;
(2)估計(jì)這個(gè)陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為(為參數(shù)),以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,,交曲線E于點(diǎn)A,B,交曲線E于點(diǎn)C,D.
(1)求曲線E的普通方程及極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個(gè)人類社會(huì)價(jià)值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號(hào) | 1 | 2 | 3 | 4 | 5 |
企業(yè)總數(shù)量y(單位:千個(gè)) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:參考數(shù)據(jù)(其中z=lny).
附:樣本(xi,yi)(i=1,2,…,n)的最小二乘法估計(jì)公式為
(1)根據(jù)表中數(shù)據(jù)判斷,y=a+bx與y=cedx(其中e=2.71828…,為自然對(duì)數(shù)的底數(shù)),哪一個(gè)回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)
(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點(diǎn)后第三位);
(3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請(qǐng)甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個(gè)公司參加,并決出勝負(fù);②每場比賽獲勝的公司與未參加此場比賽的公司進(jìn)行下一場的比賽;③在比賽中,若有一個(gè)公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請(qǐng)通過計(jì)算說明,哪兩個(gè)公司進(jìn)行首場比賽時(shí),甲公司獲得“優(yōu)勝公司”的概率最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為4的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)判斷在線段上是否存在一點(diǎn),使平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com