【題目】2019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時有效地對疫情數(shù)據(jù)進行流行病學統(tǒng)計分析,某地研究機構針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關數(shù)據(jù).

1)請將列聯(lián)表填寫完整:

有接觸史

無接觸史

總計

有武漢旅行史

27

無武漢旅行史

18

總計

27

54

2)能否在犯錯誤的概率不超過0.025的前提下認為有武漢旅行史與有確診病例接觸史有關系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】1)列聯(lián)表見解析;(2)能

【解析】

1)根據(jù)表格可得有武漢旅行史且有接觸史的有9人,有武漢旅行史且無接觸史的有18人,可以完成表格;

2)根據(jù)列聯(lián)表計算卡方,根據(jù)參考數(shù)據(jù)可以得出結論.

1)請將該列聯(lián)表填寫完整:

有接觸史

無接觸史

總計

有武漢旅行史

9

18

27

無武漢旅行史

18

9

27

總計

27

27

54

2)根據(jù)列聯(lián)表中的數(shù)據(jù),由于

.

因此,在犯錯誤的概率不超過0.025的前提下,認為有武漢旅行史與有確診病例接觸史有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,天花板上掛著3串玻璃球,射擊玻璃球規(guī)則:每次擊中1球,每串中下面球沒擊中,上面球不能擊中,則把這6個球全部擊中射擊方法數(shù)是(

A.78B.60C.48D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】x1x2是函數(shù)f(x)aln xbx2x的兩個極值點.

(1)試確定常數(shù)ab的值;

(2)判斷x1,x2是函數(shù)f(x)的極大值點還是極小值點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面平行于三棱錐的底面,等邊所在的平面與底面垂直,且,設

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E1(a>b>0)的離心率為,焦點到相應準線的距離為.

(1) 求橢圓E的標準方程;

(2) 已知P(t,0)為橢圓E外一動點,過點P分別作直線l1l2,直線l1l2分別交橢圓E于點A,B和點C,D,且l1l2的斜率分別為定值k1k2,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線、、兩兩成異面直線.問是否存在直線同時與、、相交?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定平面上的五個點、、、,任意三點不共線.由這些點連成4條線段,每個點至少是一條線段的端點.則不同的連結方式有( ).

A. 120 B. 125 C. 130 D. 135

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學習雷鋒精神前半年內某單位餐廳的固定餐椅經常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:

損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計

學習雷鋒精神前

50

150

200

學習雷鋒精神后

30

170

200

總 計

80

320

400

(1)求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關?

(2)請說明是否有97.5%以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神有關?

參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:某射手射擊一次,擊中目標的概率是0.9,他連續(xù)射擊三次,且他每次射擊是否擊中目標之間沒有影響,有下列結論:①他三次都擊中目標的概率是;②他第三次擊中目標的概率是; ③他恰好2次擊中目標的概率是;④他至少次擊中目標的概率是;⑤他至多2次擊中目標的概率是.其中正確命題的序號是 ________(正確命題的序號全填上).

查看答案和解析>>

同步練習冊答案