(本題12分)已知,求的值.

解析試題分析:原式=,
,且
,
,
故原式=.
考點:本小題屬于“給值求值”的問題,考查學(xué)生的運算求解能力.
點評:解決本小題的關(guān)鍵是用已知角來表示未知角,要靈活運用公式求值,不能盲目運算,以免造成運算繁瑣.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)時,函數(shù)的最大值與最小值的和為,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),
(1)求的最大值;
(2)設(shè)△中,角、的對邊分別為,若
求角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下圖是函數(shù)的部分圖像

(1)求
(2),上有
一根,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),其中
(1)求函數(shù)在區(qū)間上的值域;
(2)在中,.,分別是角的對邊, ,且
的面積,求邊的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知
(1)若的單調(diào)遞增區(qū)間;
(2)若的最大值為4,求a的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題滿分12分)已知函數(shù)的一條對稱軸為,且
(1)求f(x)的解析式;(2)求f(x)的最小正周期、單調(diào)增區(qū)間及對稱中心。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)設(shè)的內(nèi)角,且為鈍角,求的最小值;
(2)設(shè)是銳角的內(nèi)角,且的三個內(nèi)角的大小和AC邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)以,其相鄰兩個最值點的橫坐標(biāo)之差為2π.
(1)求f(x)的單調(diào)遞增區(qū)間;[來源:學(xué)|科|網(wǎng)]
(2)在△ABC中,角A、B、C的對邊分別是a、b、c滿足(2a-c)cosB=bcosC,求函f(A)的值域.

查看答案和解析>>

同步練習(xí)冊答案