設
(I)已知上單調(diào)性一致,求a的取值范圍;
(II)設,證明不等式
(I)由基本不等式得:
(II)證明見解析。
(I)由
…2分


所以上為減函數(shù)。…………4分
上為減函數(shù),
則:
…6分
上恒成立,即上恒成立;

由基本不等式得:…………8分
(II)證明:因為上為減函數(shù),

①…………11分
又當上為減函數(shù)。


由①②可得得證!15分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若為大于0的常數(shù)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知常數(shù)、都是實數(shù),函數(shù)的導函數(shù)為
(Ⅰ)設,求函數(shù)的解析式;
(Ⅱ)如果方程的兩個實數(shù)根分別為、,并且
問:是否存在正整數(shù),使得?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖象過(-1,1)點,其反函數(shù)的圖象過(8,2)點。
(1)求a,k的值;
(2)若將的圖象向在平移兩個單位,再向上平移1個單位,就得到函數(shù)的圖象,寫出的解析式;
(3)若函數(shù)的最小值及取最小值時x的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖象過原點,,,函數(shù)y=f(x)與y=g(x)的圖象交于不同兩點A、B。
(1)若y=F(x)在x=-1處取得極大值2,求函數(shù)y=F(x)的單調(diào)區(qū)間;
(2)若使g(x)=0的x值滿足,求線段AB在x軸上的射影長的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

M是由滿足下列兩個條件的函數(shù)構成的集合:
①議程有實根;②函數(shù)的導數(shù)滿足0<<1.
(I)若,判斷方程的根的個數(shù);
(II)判斷(I)中的函數(shù)是否為集合M的元素;
(III)對于M中的任意函數(shù),設x1是方程的實根,求證:對于定義域中任意的x2,x3,當| x2x1|<1,且| x3x1|<1時,有

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的兩個極值點,
(1)求的取值范圍;
(2)若,對恒成立。求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)若的取值范圍;
(2)若的圖象與的圖象恰有3個交點?若存在求出的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求下列函數(shù)的導數(shù):
(1);(2);(3)

查看答案和解析>>

同步練習冊答案