【題目】已知函數(shù),曲線在點處的切線方程為.
(1)若函數(shù)在時有極值,求表達(dá)式;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】分析:(1)求出導(dǎo)函數(shù),令導(dǎo)函數(shù)在0處的值為3,在﹣2處的值為0,函數(shù)在1處的值為4,列出方程組求出a,b,c的值;
(2)令導(dǎo)函數(shù)f′(x)在[﹣2,1]上恒成立,通過對對稱軸與區(qū)間關(guān)系的討論求出導(dǎo)函數(shù)在區(qū)間的最小值,令最小值大于等于0,求出a的范圍.
詳解:(1)f′(x)=3x2+2ax+b
∵曲線y=f(x)在點P(0,f(0))處的切線方程為y=3x+1.
∴
解得a=,b=3,c=1
∴.
(2)上恒成立
①當(dāng)時,解得
②當(dāng)時,解得,所以無解
③當(dāng)時,解得,所以無解
綜上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐A﹣BCD及其側(cè)視圖、俯視圖如圖所示,設(shè)M,N分別為線段AD,AB的中點,P為線段BC上的點,且MN⊥NP.
(1)證明:P是線段BC的中點;
(2)求二面角A﹣NP﹣M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(I)求橢圓的方程;
(Ⅱ)過橢圓的右頂點做相互垂直的兩條直線,,分別交橢圓于、(、異于點),問直線是否通過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查乘客的候車情況,公交公司在某站臺的60名候車乘客中隨機(jī)抽取15人,將他們的候車時間(單位:分鐘)作為樣本分成5組,如下表所示:
組別 | 候車時間 | 人數(shù) |
一 | [0,5) | 2 |
二 | [5,10) | 6 |
三 | [10,15) | 4 |
四 | [15,20) | 2 |
五 | [20,25] | 1 |
(Ⅰ)求這15名乘客的平均候車時間;
(Ⅱ)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(Ⅲ)若從上表第三、四組的6人中隨機(jī)抽取2人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩個不共線的非零向量.
(1)設(shè),,,那么當(dāng)實數(shù)t為何值時,A,B,C三點共線;
(2)若,且與的夾角為60°,那么實數(shù)x為何值時的值最小?最小值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
(1)請將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為 (直接寫出結(jié)果即可);
(2)根據(jù)表格中的數(shù)據(jù)作出一個周期的圖象;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),任取兩個不相等的正數(shù), ,總有,對于任意的,總有,若有兩個不同的零點,則正實數(shù)的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線方程為,點為坐標(biāo)原點,不過點的直線與拋物線交于不同的兩點.
(1)如果直線過點,求證: ;
(2)如果,證明:直線必過一定點,并求出該定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com