【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面,平面,.

1)求證:

2)求二面角的余弦值.

【答案】1)見(jiàn)解析(2

【解析】

1)由,得到平面,平面,根據(jù)平面平面,由面面平行的性質(zhì)定理得到,進(jìn)而得到四邊形為平行四邊形,再根據(jù)平面,得到,由,得到,同理得到,由線面垂直的判定定理得到平面得證.

2)由(1)可知,直線、兩兩垂直.為坐標(biāo)原點(diǎn),以、為坐標(biāo)軸建立的空間直角坐標(biāo)系,設(shè),則,,分別求得平面和平面的一個(gè)法向量,代入求解.

1)證明:由

可知、、四點(diǎn)確定平面、、四點(diǎn)確定平面.

∵平面平面,且平面平面,

平面平面

,四邊形為平行四邊形.

同理可得,四邊形為平行四邊形,四邊形為平行四邊形.

平面平面,

,于是.

,

.

平面,平面.

平面,而平面,

.

2)由(1)可知,直線、兩兩垂直.為坐標(biāo)原點(diǎn),以、為坐標(biāo)軸建立的空間直角坐標(biāo)系.

不妨設(shè),則,.

,,

,,

設(shè)平面的一個(gè)法向量為,

,則,

,則,

∴平面的一個(gè)法向量為.

設(shè)平面的一個(gè)法向量為

,則

,則,

∴平面的一個(gè)法向量為.

∴二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)點(diǎn)且互相垂直的兩條動(dòng)直線與拋物線分別交于、.

1)求的取值范圍;

2)記線段的中點(diǎn)分別為,求證:直線恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個(gè)極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】人們通常以分貝(符號(hào)是)為單位來(lái)表示聲音強(qiáng)度的等級(jí),30~40分貝是較理想的安靜環(huán)境,超過(guò)50分貝就會(huì)影響睡眠和休息,70分貝以上會(huì)干擾談話,長(zhǎng)期生活在90分貝以上的嗓聲環(huán)境,會(huì)嚴(yán)重影響聽(tīng)力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達(dá)150分貝的噪聲環(huán)境中,聽(tīng)覺(jué)器官會(huì)發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽(tīng)力,為了保護(hù)聽(tīng)力,應(yīng)控制噪聲不超過(guò)90分貝,一般地,如果強(qiáng)度為的聲音對(duì)應(yīng)的等級(jí)為,則有,則的聲音與的聲音強(qiáng)度之比為(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直四棱柱被平面所截得到如圖所示的五面體,,

1)求證:∥平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓相外切,且與直線相切.

1)記圓心的軌跡為曲線,求的方程;

2)過(guò)點(diǎn)的兩條直線與曲線分別相交于點(diǎn),線段的中點(diǎn)分別為.如果直線的斜率之積等于1,求證:直線經(jīng)過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,若△的三個(gè)頂點(diǎn)都在拋物線上,且,則稱該三角形為“核心三角形”.

1)是否存在“核心三角形”,其中兩個(gè)頂點(diǎn)的坐標(biāo)分別為?請(qǐng)說(shuō)明理由;

2)設(shè)“核心三角形”的一邊所在直線的斜率為4,求直線的方程;

3)已知△是“核心三角形”,證明:點(diǎn)的橫坐標(biāo)小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點(diǎn),F(xiàn)為其右焦點(diǎn),P是橢圓C上異于A,B的動(dòng)點(diǎn),且△APB面積的最大值為

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線AP與橢圓在點(diǎn)B處的切線交于點(diǎn)D,當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),求證:以BD為直徑的圓與直線PF恒相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司為客戶定制了5個(gè)險(xiǎn)種:甲,一年期短險(xiǎn);乙,兩全保險(xiǎn);丙,理財(cái)類保險(xiǎn);丁,定期壽險(xiǎn):戊,重大疾病保險(xiǎn),各種保險(xiǎn)按相關(guān)約定進(jìn)行參保與理賠.該保險(xiǎn)公司對(duì)5個(gè)險(xiǎn)種參?蛻暨M(jìn)行抽樣調(diào)查,得出如下的統(tǒng)計(jì)圖例,以下四個(gè)選項(xiàng)錯(cuò)誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參保總費(fèi)用最少

C.丁險(xiǎn)種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

同步練習(xí)冊(cè)答案