已知95個數(shù)a1,a2,…,a95每個都只能取+1或-1兩個值之一,那么它們的兩兩之積的和a1a2+a1a3+…+a94a95的最小正值為   
【答案】分析:令t=a1a2+a1a3+…+a94a95,進(jìn)而可得2t=2(a1a2+a1a3+…+a94a95)=(a1+a2+…+a952-(a12+a22+…+a952),分析易得a12+a22+…+a952=95,即2t=(a1+a2+…+a952-95,分析a1+a2+…+a95的特點,可得(a1+a2+…+a95)=±11時,t取得最小值,將其代入2t=(a1+a2+…+a952-95中,變形可得答案.
解答:解:根據(jù)題意,令t=a1a2+a1a3+…+a94a95
則2t=2(a1a2+a1a3+…+a94a95)=(a1+a2+…+a952-(a12+a22+…+a952),
又由a1,a2,…,a95每個都只能取+1或-1兩個值之一,則a12+a22+…+a952=95
即2t=(a1+a2+…+a952-95,
要使t取最小正數(shù),t中(a1+a2+…+a952大于95即可,
而a1+a2+…+a95為奇數(shù)個-1、1的和,不會得偶數(shù),
則要使所求值取最小正數(shù),須使(a1+a2+…+a95)=±11,
因此t的最小值為=13.
故答案為:13.
點評:本題考查等式的恒等變形的應(yīng)用,解題注意轉(zhuǎn)化思想,利用2(a1a2+a1a3+…+a94a95)=(a1+a2+…+a952-(a12+a22+…+a952)來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知95個數(shù)a1,a2,…,a95每個都只能取+1或-1兩個值之一,那么它們的兩兩之積的和a1a2+a1a3+…+a94a95的最小正值為
13
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知95個數(shù)a1,a2,…,a95每個都只能取+1或-1兩個值之一,那么它們的兩兩之積的和a1a2+a1a3+…+a94a95的最小正值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知95個數(shù)a1,a2,…,a95每個都只能取+1或-1兩個值之一,那么它們的兩兩之積的和a1a2+a1a3+…+a94a95的最小正值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省深圳市龍城高級中學(xué)高二競賽班選拔性測試數(shù)學(xué)試卷(解析版) 題型:解答題

已知95個數(shù)a1,a2,…,a95每個都只能取+1或-1兩個值之一,那么它們的兩兩之積的和a1a2+a1a3+…+a94a95的最小正值為   

查看答案和解析>>

同步練習(xí)冊答案