已知橢圓的中心在原點,焦點在x軸上,焦距等于6,離心率等于
,則此橢圓的方程是
試題分析:由已知2c="6,"
=
,
,解得a=5,b=4,所以橢圓的方程是
,選C。
點評:簡單題,根據(jù)a,b,c,e的關(guān)系,可求橢圓的標準方程。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系
中,
是半圓
的直徑,
是半圓
(除端點
)上的任意一點.在線段
的延長線上取點
,使
,試求動點
的軌跡方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
平面
、
、
兩兩垂直,定點
,A到
、
距離都是1,P是
上動點,P到
的距離等于P到點
的距離,則P點軌跡上的點到
距離的最小值是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點
,它們在
軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點
,點
都滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
上一點M到焦點
的距離為2,
是
的中點,則
等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線
,焦點為
,準線為
,
為拋物線上一點,
,
為垂足,如果直線
的斜率為
,那么
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知點
是橢圓
的右頂點,若點
在橢圓上,且滿足
.(其中
為坐標原點)
(1)求橢圓的方程;
(2)若直線
與橢圓交于兩點
,當
時,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若拋物線
的焦點與雙曲線
的右焦點重合,則實數(shù)
的值是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,斜率為1的直線過拋物線
的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線
的方程;
(2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求
的面積S的最大值;
(3)設(shè)P是拋物線
上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關(guān))
查看答案和解析>>