【題目】已知數(shù)列{an}的通項公式為an= ﹣n.
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)求此數(shù)列的前二十項和S20 .
【答案】
(1)解:∵數(shù)列{an}的通項公式為an= ﹣n,
∴當n≥2時,an﹣an﹣1= ﹣n﹣[ ﹣(n﹣1)]=1,
∴數(shù)列{an}是等差數(shù)列,首項為 ,公差為1
(2)解:∵ = = .
∴S20= =﹣120
【解析】(1)利用等差數(shù)列的定義即可證明;(2)利用等差數(shù)列的前n項和公式即可得出.
【考點精析】本題主要考查了等差關(guān)系的確定和數(shù)列的前n項和的相關(guān)知識點,需要掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即-=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足 .
(1)若a=1,且p∨q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=3,a5+a7=12,{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a1+a3=10,S4=24.
(1)求數(shù)列{an}的通項公式;
(2)令Tn= ,求證:Tn< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系內(nèi),已知A(3,3)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點P,使∠MPN=90°,其中M,N的坐標分別為(﹣m,0)(m,0),則m的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,且 a=2csinA.
(1)確定∠C的大;
(2)若c= ,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在處的切線方程;
(2)若任意,不等式恒成立,求實數(shù)的取值范圍;
(3)設, ,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐 A﹣BCDE中,側(cè)面△ADE為等邊三角形,底面 BCDE是等腰梯形,且CD∥B E,DE=2,CD=4,∠CD E=60°,M為D E的中點,F(xiàn)為AC的中點,且AC=4.
(1)求證:平面 ADE⊥平面BCD;
(2)求證:FB∥平面ADE;
(3)求四棱錐A﹣BCDE的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com