【題目】如圖,在三棱錐中,平面ABC,點D,E,F分別為PCAB,AC的中點.

(Ⅰ)求證:平面DEF;

(Ⅱ)求證:

閱讀下面給出的解答過程及思路分析.

解答:(Ⅰ)證明:在中,因為E,F分別為AB,AC的中點,所以

因為平面DEF平面DEF,所以平面DEF

(Ⅱ)證明:因為平面ABC,平面ABC,所以

因為D,F分別為PCAC的中點,所以.所以

思路第(Ⅰ)問是先證,再證線面平行;

第(Ⅱ)問是先證,再證,最后證線線垂直

以上證明過程及思路分析中,設置了①~⑤五個空格,如下的表格中為每個空格給出了三個選項,其中只有一個正確,請選出你認為正確的選項,并填寫在答題卡的指定位置.

空格

選項

A

B

C

A

B

C

A.線線垂直

B.線面垂直

C.線線平行

A.線線垂直

B.線面垂直

C.線線平行

A.線面平行

B.線線平行

C.線面垂直

【答案】A;②B;③C;④A;⑤B

【解析】

①:由中位線分析;②線面垂直的性質(zhì)分析;③由線線推導線面;④由線面垂直推導線線垂直;⑤由線線平行推導線線垂直.

①因為是中位線,所以,故選A;②平面平面,可通過線面垂直得到線線垂直,故選B;③通過中位線,先證線線平行,再證線面平行,故選C;④根據(jù)可知:先證明線線垂直,故選A;⑤由可知:再證線線平行,故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為.以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)已知點.若點的極坐標為,直線經(jīng)過點且與曲線相交于,兩點,求,兩點間的距離的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是(  )

A. (1,2015)B. (1,2016)

C. [2,2 016]D. (2,2016)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市經(jīng)營一批產(chǎn)品,在市場銷售中發(fā)現(xiàn)此產(chǎn)品在30天內(nèi)的日銷售量P(件)與日期)之間滿足,已知第5日的銷售量為55件,第10日的銷售量為50件。

(1)求第20日的銷售量; (2)若銷售單價Q(元/件)與的關系式為,求日銷售額的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形,.

(1)證明:;

(2)設是線段上的動點,是否存在這樣的點,使得二面角的余弦值為,如果存在,求出的長;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)討論的單調(diào)性和極值;

(2)證明:當時,若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】土壤重金屬污染已經(jīng)成為快速工業(yè)化和經(jīng)濟高速增長地區(qū)的一個嚴重問題,污染土壤中的某些重金屬易被農(nóng)作物吸收,并轉(zhuǎn)入食物鏈影響大眾健康.AB兩種重金屬作為潛在的致癌物質(zhì),應引起特別關注.某中學科技小組對由A,B兩種重金屬組成的1000克混合物進行研究,測得其體積為100立方厘米(不考慮物理及化學變化),已知重金屬A的密度大于,小于,重金屬B的密度為.試計算此混合物中重金屬A的克數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率為,長軸端點與短軸端點間的距離為

I)求橢圓的方程;

II)設過點 的直線與橢圓交于兩點,為坐標原點,若為直角三角形,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大豆,古稱菽,原產(chǎn)中國,在中國已有五千年栽培歷史,皖北多平原地帶,黃河故道土地肥沃,適宜種植大豆,2018年春,為響應中國大豆參與世界貿(mào)易的競爭,某市農(nóng)科院積極研究,加大優(yōu)良品種的培育工作,其中一項基礎工作就是研究晝夜溫差大小與大豆發(fā)芽率之間的關系,為此科研人員分別記錄了5天中每天100粒大豆的發(fā)芽數(shù),得如下數(shù)據(jù)表格:

科研人員確定研究方案是:從5組數(shù)據(jù)中選3組數(shù)據(jù)求線性回歸方程,再用求得的回歸方程對剩下的2組數(shù)據(jù)進行檢驗.

(Ⅰ)求剩下的2組數(shù)據(jù)恰是不相鄰的2天數(shù)據(jù)的概率;

(Ⅱ)若選取的是4月5日、6日、7日三天數(shù)據(jù),據(jù)此求關于的線性同歸方程;

(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差絕對值均不超過1粒,則認為得到的線性回歸方程是可靠的,請檢驗(Ⅱ)中同歸方程是否可靠?

注:.

查看答案和解析>>

同步練習冊答案