【題目】已知0x2,0y2,且M+M的最小值為( 。

A.B.C.2D.

【答案】D

【解析】

先根據(jù)兩點(diǎn)間距離公式化為動(dòng)點(diǎn)到四個(gè)定點(diǎn)的距離和,再根據(jù)圖象確定最小值取法,即得結(jié)果.

解:根據(jù)題意,可知

表示點(diǎn)(x,y)與點(diǎn)A,0)的距離;

表示點(diǎn)(x,y)與點(diǎn)B0)的距離;

表示點(diǎn)(x,y)與點(diǎn)C2)的距離;

表示點(diǎn)(x,y)與點(diǎn)D2,)的距離.

M表示點(diǎn)(x,y)到A、B、C、D四個(gè)點(diǎn)的距離和的最小值.

則可畫(huà)圖如下:

的最小值是點(diǎn)(xy)在線(xiàn)段AC上,

同理,

的最小值是點(diǎn)(x,y)在線(xiàn)段BD上,

∴點(diǎn)(x,y)既在線(xiàn)段AC上,又在線(xiàn)段BD上,

∴點(diǎn)(x,y)即為圖中點(diǎn)P.

M的最小值為|AC|+|BD|4.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為原點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)直線(xiàn)軸的交點(diǎn)為,過(guò)點(diǎn)作傾斜角為的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的右頂點(diǎn)到其一條漸近線(xiàn)的距離等于,拋物線(xiàn)的焦點(diǎn)與雙曲線(xiàn)的右焦點(diǎn)重合,則拋物線(xiàn)上的動(dòng)點(diǎn)到直線(xiàn)距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)C的直線(xiàn)VC垂直于圓O所在平面,DE分別是VA,VC的中點(diǎn).

1)判斷直線(xiàn)DE與平面VBC的位置關(guān)系,并說(shuō)明理由;

2)當(dāng)△VAB為邊長(zhǎng)為的正三角形時(shí),求四面體VDEB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓, 是圓M內(nèi)一個(gè)定點(diǎn),P是圓上任意一點(diǎn),線(xiàn)段PN的垂直平分線(xiàn)l和半徑MP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線(xiàn)E

1)求曲線(xiàn)E的方程;

2)過(guò)點(diǎn)D(0,3)作直線(xiàn)m與曲線(xiàn)E交于A,B兩點(diǎn),點(diǎn)C滿(mǎn)足 (O為原點(diǎn)),求四邊形OACB面積的最大值,并求此時(shí)直線(xiàn)m的方程;

3)已知拋物線(xiàn)上,是否存在直線(xiàn)與曲線(xiàn)E交于GH,使得G,H的中點(diǎn)F落在直線(xiàn)y=2x上,并且與拋物線(xiàn)相切,若直線(xiàn)存在,求出直線(xiàn)的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)C的直線(xiàn)VC垂直于圓O所在平面,D,E分別是VAVC的中點(diǎn).

1)判斷直線(xiàn)DE與平面VBC的位置關(guān)系,并說(shuō)明理由;

2)當(dāng)△VAB為邊長(zhǎng)為的正三角形時(shí),求四面體VDEB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)解不等式: ;

(Ⅱ)已知,若對(duì)任意的,不等式恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的兩個(gè)頂點(diǎn),的坐標(biāo)分別為,,圓的內(nèi)切圓,在邊,,上的切點(diǎn)分別為,,動(dòng)點(diǎn)的軌跡為曲線(xiàn).

(1)求曲線(xiàn)的方程;

(2)設(shè)直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),點(diǎn)在曲線(xiàn)上,是坐標(biāo)原點(diǎn),若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,的中點(diǎn),現(xiàn)將折起,使得平面及平面都與平面垂直.

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案