【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點(diǎn).

1)判斷直線DE與平面VBC的位置關(guān)系,并說(shuō)明理由;

2)當(dāng)△VAB為邊長(zhǎng)為的正三角形時(shí),求四面體VDEB的體積.

【答案】1⊥平面,理由見(jiàn)解析(2

【解析】

1)由已知可得ACBC,ACVC,可證AC⊥平面VBC,D,E分別是VA,VC的中點(diǎn),有DEAC,即可證明結(jié)論;

(2)由已知可證△VBC≌△VAC,得到BC=AC,進(jìn)而求出BC,AC,VC值,利用等體積法有,即可求解.

1DE⊥平面VBC,證明如下:

AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),

ACBC,∵過(guò)動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,

AC平面ABC,∴ACVC,∵BCVC=C

AC⊥平面VBC,∵D,E分別是VA,VC的中點(diǎn),

DEAC,∴DE⊥平面VBC.

2)∵△VAB為邊長(zhǎng)為的正三角形,

AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),

過(guò)動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,

D,E分別是VA,VC的中點(diǎn),∴△VBC≌△VAC,∴BC=AC,∴BC2+AC2=AB2=8.AC=BC=2

DE分別是VA,VC的中點(diǎn),∴DE==1,

∴四面體VDEB的體積為:

=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線,

1)求證:直線恒過(guò)定點(diǎn);

2)判斷直線被圓截得的弦長(zhǎng)何時(shí)最長(zhǎng),何時(shí)最短?并求截得的弦長(zhǎng)最短時(shí),求的值以及最短長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題為真命題的序號(hào)是__________.

①“是真命題.

②“的逆命題是真命題.

的充分不必要條件.

④“直線與直線互相垂直的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線過(guò)原點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對(duì)稱.

(Ⅰ)求曲線的極坐標(biāo)方程;

(Ⅱ)若直線過(guò)原點(diǎn)且傾斜角為,設(shè)直線與曲線相交于,兩點(diǎn),直線與曲線相交于,兩點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為平行四邊形,平面平面,是邊長(zhǎng)為4的等邊三角形,,的中點(diǎn).

(1)求證:;

(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=ADC=90°,AB=AD=CD=1,PD=.

1)若MPA中點(diǎn),求證:AC∥平面MDE;

2)求直線PE與平面PBC所成角的正弦值.

3)在PC上是否存在一點(diǎn)Q,使得平面QAD與平面PBC所成銳二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知0x2,0y2,且M+M的最小值為( 。

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且橢圓過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線交于,兩點(diǎn),點(diǎn)上,是坐標(biāo)原點(diǎn),若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的序號(hào)是____________(寫(xiě)出所有正確命題的序號(hào))

1為實(shí)數(shù)為有理數(shù)的充分不必要條件;

2的充要條件

3的必要不充分條件;

4的充分不必要條件;

5的三個(gè)內(nèi)角為.“的充要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案