(2011•佛山二模)設x,y滿足約束條件
2x+y-6≥0
x+2y-6≤0
y≥0
,則目標函數(shù)z=x+y的最大值是( 。
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,只需求出直線z=x+y過點A(6,0)時,z最大值即可.
解答:解:先根據(jù)約束條件
2x+y-6≥0
x+2y-6≤0
y≥0

畫出可行域,
然后平移直線0=x+y,
當直線z=x+y過點
x+2y-6=0
y=0
,解得A(6,0)時,z最大值為6.
故選B.
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•佛山二模)已知函數(shù)f(x)=
2x,x≤0
log2x,x>0
,則f[f(-1)]=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•佛山二模)在正項等比數(shù)列{an}中,若a2+a3=2,a4+a5=8,則a5+a6=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•佛山二模)已知平面直角坐標系上的三點A(0,1),B(-2,0),C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共線.
(1)求tanθ;
(2)求sin(2θ-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•佛山二模)如圖,某地一天從6~14時的溫度變化曲線近似滿足函數(shù):y=Asin(ωx+φ)+B.則中午12點時最接近的溫度為( 。

查看答案和解析>>

同步練習冊答案