(2011•佛山二模)在正項(xiàng)等比數(shù)列{an}中,若a2+a3=2,a4+a5=8,則a5+a6=(  )
分析:a4+a5=(a2+a3)q2,a5+a6=(a4+a5)q.
解答:解:設(shè)正項(xiàng)等比數(shù)列{an}的公比為q,
a4+a5
a2+a3
=
(a2+a3)q2
a2+a3
=4
q2=4,q=2
a5+a6=(a4+a5)q=8×2=16
故選A.
點(diǎn)評(píng):本題考查了等比數(shù)例的通項(xiàng)公式,解題過(guò)程運(yùn)用了整體運(yùn)算技巧,解法方便快捷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•佛山二模)已知函數(shù)f(x)=
2x,x≤0
log2x,x>0
,則f[f(-1)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•佛山二模)設(shè)x,y滿足約束條件
2x+y-6≥0
x+2y-6≤0
y≥0
,則目標(biāo)函數(shù)z=x+y的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•佛山二模)已知平面直角坐標(biāo)系上的三點(diǎn)A(0,1),B(-2,0),C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共線.
(1)求tanθ;
(2)求sin(2θ-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•佛山二模)如圖,某地一天從6~14時(shí)的溫度變化曲線近似滿足函數(shù):y=Asin(ωx+φ)+B.則中午12點(diǎn)時(shí)最接近的溫度為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案