精英家教網 > 高中數學 > 題目詳情

【題目】已知函數 ,g(x)=2x﹣1,則f(g(2))= , f[g(x)]的值域為

【答案】2;[﹣1,+∞)
【解析】解:∵ ,g(x)=2x﹣1,
∴g(2)=3,則f(g(2))=f(3)=2;
∵g(x)=2x﹣1>﹣1,
∴當g(x)∈(﹣1,0]時,f(g(x))∈[﹣1,0);
當g(x)∈(0,+∞)時,f(g(x))∈(﹣1,+∞).
取并集得f(g(x))∈[﹣1,+∞).
所以答案是:2,[﹣1,+∞).
【考點精析】利用函數的值域和函數的值對題目進行判斷即可得到答案,需要熟知求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的;函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數
(1)求函數f(x)的定義域;
(2)若當x∈[0,1]時,不等式f(x)≥1恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F(xiàn)為左焦點,原點O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是cm2 , 體積是cm3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.

(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點,求證:GH∥平面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點.

(1)證明:DQ∥平面CPM;
(2)若二面角C﹣AB﹣D的大小為 ,求∠BDC的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數g(x)=﹣2x2+6x﹣1,則:
(1)其對稱軸:;
(2)頂點坐標為;
(3)單調區(qū)間為
(4)g(x)的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣1.
(1)對于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求實數m的取值范圍;
(2)若對任意實數x1∈[1,2].存在實數x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|ax2+x﹣4a|,其中x∈[﹣2,2],a∈[﹣1,1].
(1)當α=1時,求函數y=f(x)的值域;
(2)記f(x)的最大值為M(a),求M(a)的取值范圍.

查看答案和解析>>

同步練習冊答案