(2011•奉賢區(qū)二模)設(shè)函數(shù)y=f(x)=ax(a>0,a≠1),y=f-1(x)表示y=f(x)的反函數(shù),定義如框圖表示的運(yùn)算,若輸入x=-2,輸出y=
1
4
,當(dāng)輸出y=-3時(shí),則輸入x=
1
8
1
8
分析:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算分段函數(shù) y=
f(x),x≤0
f -1(x),x>0
的函數(shù)值.
解答:解:由圖可知:
該程序的作用是計(jì)算分段函數(shù) y=
f(x),x≤0
f -1(x),x>0
的函數(shù)值.
∵輸入x=-2,輸出y=
1
4
,
∴a-2=
1
4
⇒a=2
當(dāng)輸出y=-3時(shí),
只有:f-1(x)=-3?f(-3)=x⇒x=2-3=
1
8

故答案為:
1
8
點(diǎn)評(píng):根據(jù)流程圖(或偽代碼)寫(xiě)程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類(lèi)型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)(文) 如圖都是由邊長(zhǎng)為1的正方體疊成的圖形.例如第(1)個(gè)圖形的表面積為6個(gè)平方單位,第(2)個(gè)圖形的表面積為18個(gè)平方單位,第(3)個(gè)圖形的表面積是36個(gè)平方單位.依此規(guī)律,則第n個(gè)圖形的表面積是
3n(n+1)
3n(n+1)
個(gè)平方單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
b
a
上的投影為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿(mǎn)足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)用2π平方米的材料制成一個(gè)有蓋的圓錐形容器,如果在制作過(guò)程中材料無(wú)損耗,且材料的厚度忽略不計(jì),底面半徑長(zhǎng)為x,圓錐母線(xiàn)的長(zhǎng)為y
(1)建立y與x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(2)圓錐的母線(xiàn)與底面所成的角大小為
π3
,求所制作的圓錐形容器容積多少立方米(精確到0.01m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)若復(fù)數(shù)3+i是實(shí)系數(shù)一元二次方程x2-6x+b=0的一個(gè)根,則b=
10
10

查看答案和解析>>

同步練習(xí)冊(cè)答案