【題目】已知橢圓C:(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣=0截得的弦長為2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點A、B為動直線y=k(x﹣1),k≠0與橢圓C的兩個交點,問:在x軸上是否存在定點M,使得 為定值?若存在,試求出點M的坐標(biāo)和定值;若不存在,請說明理由.
【答案】(1) (2)
【解析】試題分析:
(1)由題意求得a,b的值可得橢圓方程為;
(2)聯(lián)立直線與橢圓的方程,結(jié)合題意可得,存在點 滿足 為定值 .
試題解析:
解:(I)圓x2+y2=a2的圓心(0,0)到直線x﹣y﹣=0的距離d==1,
∴2=2,解得a2=2,又=,a2=b2+c2,
聯(lián)立解得:a2=2,c=1=b.
∴橢圓C的標(biāo)準(zhǔn)方程為: +y2=1.
(II)假設(shè)在x軸上存在定點M(m,0),使得為定值.
設(shè)A(x1,y1),B(x2,y2),聯(lián)立,化為:(1+2k2)x2﹣4k2x+2k2﹣2=0,
則x1+x2=,x1x2=.
=(x1﹣m,y1)(x2﹣m,y2)=(x1﹣m)(x2﹣m)+y1y2=(x1﹣m)(x2﹣m)+k2(x1﹣1)(x2﹣1)=(1+k2)x1x2﹣(m+k2)(x1+x2)+m2+k2
=(1+k2)﹣(m+k2)+m2+k2
=,
令2m2﹣4m+1=2(m2﹣2),解得m=.
因此在x軸上存在定點M(,0),使得為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(ax+b)(其中e=2.71828…),g(x)=x2+2bx+2,已知它們在x=0處有相同的切線.
(1)求函數(shù)f(x),g(x)的解析式;
(2)若函數(shù)F(x)=f(x)+g(x)﹣2(ex+x),試判斷函數(shù)F(x)的零點個數(shù),并說明理由;
(3)若函數(shù)f(x)在[t,t+1](t>﹣3)上的最小值為φ(t),解關(guān)于t的不等式φ(t)≤4e2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到點和直線l: 的距離相等.
(Ⅰ)求動點的軌跡E的方程;
(Ⅱ)已知不與垂直的直線與曲線E有唯一公共點A,且與直線的交點為,以AP為直徑作圓.判斷點和圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“現(xiàn)代五項”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運動項目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項運動.已知甲、乙、丙共三人參加“現(xiàn)代五項”.規(guī)定每一項運動的前三名得分都分別為,,(且),選手最終得分為各項得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是
A. 甲 B. 乙 C. 丙 D. 乙和丙都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(其中e為自然對數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;
(2)若m=﹣,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2<].
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+b在x=1處有極值2.求函數(shù)f(x)=x2﹣2ax+b在閉區(qū)間[0,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(﹣x2+ax)ex(x∈R,e為自然對數(shù)的底數(shù)).
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在(﹣1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次小型抽獎活動中,抽獎規(guī)則如下:一個不透明的口袋中共有6個大小相同的球,它們是1個紅球,1個黃球,和4個白球,從中抽到紅球中50元,抽到黃球中10元,抽到白球不中獎.某人從中一次性抽出兩球,求:
(1)該人中獎的概率;
(2)該人獲得的總獎金X(元)的分布列和均值E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com