【題目】紅鈴蟲(Pectinophora gossypiella)是棉花的主要害蟲之一,其產(chǎn)卵數(shù)與溫度有關(guān).現(xiàn)收集到一只紅鈴蟲的產(chǎn)卵數(shù)y(個)和溫度x(℃)的8組觀測數(shù)據(jù),制成圖1所示的散點圖.現(xiàn)用兩種模型①,②分別進行擬合,由此得到相應(yīng)的回歸方程并進行殘差分析,進一步得到圖2所示的殘差圖.
根據(jù)收集到的數(shù)據(jù),計算得到如下值:
25 | 2.89 | 646 | 168 | 422688 | 48.48 | 70308 |
表中;;;;
(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個模型?并說明理由;
(2)根據(jù)(1)中所選擇的模型,求出y關(guān)于x的回歸方程(系數(shù)精確到0.01),并求溫度為34℃時,產(chǎn)卵數(shù)y的預(yù)報值.
(參考數(shù)據(jù):,,,)
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
【答案】(1)應(yīng)該選擇模型①.見解析(2);250個
【解析】
(1)由模型①的殘差點比較均勻落在水平的帶狀區(qū)域以及帶狀區(qū)域的寬度窄,所以選擇模型①比較合適;
(2)令,z與溫度x可以用線性回歸方程來擬合,則,利用公式和數(shù)據(jù)求出和,則可以得到y關(guān)于溫度x的回歸方程,當時,可求出產(chǎn)卵數(shù)y的預(yù)報值.
(1)應(yīng)該選擇模型①.
由于模型①殘差點比較均勻地落在水平的帶狀區(qū)域中,
且?guī)顓^(qū)域的寬度比模型②帶狀寬度窄,所以模型①的擬合精度更高,
回歸方程的預(yù)報精度相應(yīng)就會越高,故選模型①比較合適
(2)令,z與溫度x可以用線性回歸方程來擬合,則.
,
所以,
則z關(guān)于x的線性回歸方程為.
于是有,
所以產(chǎn)卵數(shù)y關(guān)于溫度x的回歸方程為
當時,(個).
所以,在氣溫在34℃時,一個紅鈴蟲的產(chǎn)卵數(shù)的預(yù)報值為250個
科目:高中數(shù)學 來源: 題型:
【題目】如下為簡化的計劃生育模型:每個家庭允許生男孩最多一個,即某一胎若為男孩,則不能再生下一胎,而女孩可以多個.為方便起見,此處約定每個家庭最多可生育3個小孩,即若第一胎或前兩胎為女孩,則繼續(xù)生,但若第三胎還是女孩,則不能再生了.設(shè)每一胎生男生女等可能,且各次生育相互獨立.依據(jù)每個家庭最多生育一個男孩的政策以及我們對生育女孩的約定,令為某一家庭所生的女孩數(shù),為此家庭所生的男孩數(shù).
(1)求,的分布列,并比較它們數(shù)學期望的大。
(2)求概率,其中為的方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為平面上一點,為直線:上任意一點,過點作直線的垂線,設(shè)線段的中垂線與直線交于點,記點的軌跡為.
(1)求軌跡的方程;
(2)過點作互相垂直的直線與,其中直線與軌跡交于點、,直線與軌跡交于點、,設(shè)點,分別是和的中點,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】音樂與數(shù)學有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?/span>,得到“徵”;“徵”經(jīng)過一次“益”,頻率變?yōu)樵瓉淼?/span>,得到“商”;…….依次損益交替變化,獲得了“宮、徵、商、羽、角”五個音階.據(jù)此可推得( )
A.“宮、商、角”的頻率成等比數(shù)列B.“宮、徵、商”的頻率成等比數(shù)列
C.“商、羽、角”的頻率成等比數(shù)列D.“徵、商、羽”的頻率成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“家校連心,立德樹人——重溫愛國故事,弘揚愛國主義精神社會課堂”活動中,王老師組建了一個微信群,群的成員由學生、家長、老師和講解員共同組成.已知該微信群中男學生人數(shù)多于女生人數(shù),女學生人數(shù)多于家長人數(shù),家長人數(shù)多于教師人數(shù),教師人數(shù)多于講解員人數(shù),講解員人數(shù)的兩倍多于男生人數(shù).若把這5類人群的人數(shù)作為一組數(shù)據(jù),當該微信群總?cè)藬?shù)取最小值時,這組數(shù)據(jù)的中位數(shù)是( )
A.5B.6C.7D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四面體ABCD的邊長等于2,點A,E位于平面BCD的兩側(cè),且,點P是AC的中點.
(1)求證:平面
(2)求BP與平面所成的角的正弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個極值點,(其中),且的取值范圍為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com