【題目】如圖,已知橢圓ab0)的離心率,過(guò)點(diǎn)A0,-b)和Ba0)的直線(xiàn)與原點(diǎn)的距離為

1)求橢圓的方程.

2)已知定點(diǎn)E-1,0),若直線(xiàn)ykx2k≠0)與橢圓交于C、D兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

【答案】(1);(2).

【解析】

試題分析:(1)直線(xiàn)方程為:橢圓方程為;(2)假若存在這樣的值,由

.要使以為直徑的圓過(guò)點(diǎn)當(dāng)且僅當(dāng)時(shí)

存在,使得以為直徑的圓過(guò)點(diǎn)

試題解析:(1)直線(xiàn)方程為:

依題意解得

橢圓方程為

2)假若存在這樣的值,由

設(shè),、,,則

要使以為直徑的圓過(guò)點(diǎn),當(dāng)且僅當(dāng)時(shí),則,即

式代入整理解得.經(jīng)驗(yàn)證,,使成立.

綜上可知,存在,使得以為直徑的圓過(guò)點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,則a2016=(
A.1
B.﹣1
C.2+
D.2﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為直線(xiàn),是兩個(gè)不同的平面,下列命題中正確的是(  )

A. α,β,則αβB. α,β,則αβ

C. α,β,則αβD. αβ,α,則β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確保可能的資金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x3+ax2+bx(a,b∈R)的圖象與x軸相切于一點(diǎn)A(m,0)(m≠0),且f(x)的極大值為 ,則m的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面立角坐標(biāo)系中,過(guò)點(diǎn)的圓的圓心軸上,且與過(guò)原點(diǎn)傾斜角為的直線(xiàn)相切.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)作圓的切線(xiàn),切點(diǎn)分別為,求經(jīng)過(guò)、、四點(diǎn)的圓所過(guò)的定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ex﹣ax2﹣2x+b(e為自然對(duì)數(shù)的底數(shù),a,b∈R).
(Ⅰ)設(shè)f′(x)為f(x)的導(dǎo)函數(shù),證明:當(dāng)a>0時(shí),f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合條件的最小整數(shù)b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷(xiāo)售額(萬(wàn)元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷(xiāo)售額

19

32

40

44

52

53

54

1)若用線(xiàn)性回歸模型擬合的關(guān)系,求關(guān)于的線(xiàn)性回歸方程;

2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程:,

經(jīng)計(jì)算二次函數(shù)回歸模型和線(xiàn)性回歸模型的分別約為,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷(xiāo)售額.

參數(shù)數(shù)據(jù)及公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1 , CC1 , BC的中點(diǎn),AE⊥A1B1 , D為棱A1B1上的點(diǎn).

(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案