【題目】定義在[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=2f(x);②當(dāng)2≤x≤4時(shí),f(x)=1-|x-3|.則函數(shù)g(x)=f(x)-2在區(qū)間[1,28]上的零點(diǎn)個(gè)數(shù)為________.
【答案】4
【解析】∵定義在[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=2f(x);②當(dāng)2≤x≤4時(shí),f(x)=1-|x-3|,
∴函數(shù)f(x)在區(qū)間[1,28]上的圖象如圖所示:
函數(shù)g(x)=f(x)-2在區(qū)間[1,28]上的零點(diǎn)個(gè)數(shù),即為函數(shù)f(x)在區(qū)間[1,28]上的圖象與直線y=2交點(diǎn)的個(gè)數(shù),由圖可得函數(shù)f(x)在區(qū)間[1,28]上的圖象與直線y=2有4個(gè)交點(diǎn),故函數(shù)g(x)=f(x)-2在區(qū)間[1,28]上有4個(gè)零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如下表:
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?
(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).
(1)令,若對任意的恒成立,求實(shí)數(shù)的值;
(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,橢圓經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作橢圓的兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合,定義了一種運(yùn)算“”,使得集合中的元素間滿足條件:如果存在元素,使得對任意,都有,則稱元素是集合對運(yùn)算“”的單位元素.例如: ,運(yùn)算“”為普通乘法;存在,使得對任意,都有,所以元素是集合對普通乘法的單位元素.
下面給出三個(gè)集合及相應(yīng)的運(yùn)算“”:
①,運(yùn)算“”為普通減法;
②{表示階矩陣, },運(yùn)算“”為矩陣加法;
③(其中是任意非空集合),運(yùn)算“”為求兩個(gè)集合的交集.
其中對運(yùn)算“”有單位元素的集合序號為( )
A. ①②; B. ①③; C. ①②③; D. ②③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時(shí),方程f(x)-k=0只有1個(gè)根
(3)設(shè)函數(shù)g(x)=x2-2ax+a,若對于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為圓柱的母線, 是底面圓的直徑, 是的中點(diǎn).
(Ⅰ)問: 上是否存在點(diǎn)使得平面?請說明理由;
(Ⅱ)在(Ⅰ)的條件下,若平面,假設(shè)這個(gè)圓柱是一個(gè)大容器,有條體積可以忽略不計(jì)的小魚能在容器的任意地方游弋,如果小魚游到四棱錐外會(huì)有被捕的危險(xiǎn),求小魚被捕的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>4倍,縱坐標(biāo)變?yōu)樵瓉淼?/span>3倍,得曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)軸分別交于半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為: ,且直線在直角坐標(biāo)系中與軸分別交于兩點(diǎn).
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)問在曲線上是否存在點(diǎn),使得的面積,若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+b2(x+1)2+b3(x+1)+b4,定義映射f:(a1,a2,a3,a4)→(b1,b2,b3,b4),則f(4,3,2,1)=( )
A. (1,2,3,4) B. (0,3,4,0)
C. (0,-3,4,-1) D. (-1,0,2,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com