中心在原點,焦點在橫軸上,長軸長為4,短軸長為2,則橢圓方程是(   )
A.B.C.D.
B
由條件可設(shè)橢圓標準方程為;因為長軸長為4,短軸長為2,所以故選B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

△ABC中,A(-2,0),B(2,0),則滿足△ABC的周長為8的點C的軌跡方程為
_______。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓:,過坐標原點O作兩條互相垂直的射線,與橢圓分別交于A,B兩點.
(I)求證O到直線AB的距離為定值.
(Ⅱ)求△0AB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分) 已知拋物線C的頂點在原點, 焦點為F(0,1).
(1) 求拋物線C的方程;
(2)在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q,滿足PFQF, 且
PQ與C在點P處的切線垂直.若存在,求出
P的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知拋物線的頂點在原點,焦點為,且過點.
(1)求t的值;
(2)若直線與拋物線只有一個公共點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知橢圓的中心在原點,焦點在軸上,長軸是短軸的3倍,且經(jīng)過點,求橢圓的標準方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,且橢圓過點.
(1)求橢圓的方程;
(2)若為橢圓上的動點,為橢圓的右焦點,以為圓心,長為半徑作圓,過點作圓的兩條切線,(為切點),求點的坐標,使得四邊形的面積最大.]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a、b、c分別為雙曲線的實半軸長、虛半軸長、半焦距,且方程無實根,則雙曲線離心率的取值范圍是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案