(13分) 直線l過點A(0,1),且點B(2,– 1)到l的距離是點C(1,2)到l的距離的2倍,求直線l的方程.

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:設(shè)直線的斜率為k

k不存在時,lx = 0(符合題意) 2分

k存在時,l

    11分

∴ 所求lx = 0或     13分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆江西省高二月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(13分) 如圖,已知橢圓的兩個焦點分別為,斜率為k的直線l過左焦點F1且與橢圓的交點為A,B與y軸交點為C,又B為線段CF1的中點,若,求橢圓離心率e的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三上學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)

已知橢圓的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,直線l過點F與橢圓C交于不同的兩點A、B.

(1) 求橢圓C的方程;

(2) 若,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)過圓C上一動點M作平行于x軸的直線m,設(shè)m與y軸的交點為N,若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

(文)(本小題共13分)已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)圓C上一動點M(x0,y0),=(0,y0),若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

已知圓C的圓心在y軸上,半徑為1,且經(jīng)過點P(1,2).

求圓的方程;

直線l過點P且在圓上截得的弦長為,求l的方程.

查看答案和解析>>

同步練習(xí)冊答案