精英家教網 > 高中數學 > 題目詳情
已知F1,F2分別是雙曲線-=1(a>b>0)的兩個焦點,A和B是以O(O為坐標原點)為圓心,|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則雙曲線的離心率為( )
A.
B.
C.
D.+1
【答案】分析:先設F1F2=2c,根據△F2AB是等邊三角形,判斷出∠AF2F1=30°,進而在RT△AF1F2中求得AF1和AF2,進而根據栓曲線的簡單性質求得a,則雙曲線的離心率可得.
解答:解:如圖,設F1F2=2c,
∵△F2AB是等邊三角形,
∴∠AF2F1=30°,
∴AF1=c,AF2=C,
∴a=
e==+1,
故選D
點評:本題主要考查了雙曲線的簡單性質.考查了學生綜合分析問題和數形結合的思想的運用.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•湖南)已知F1,F2分別是橢圓E:
x25
+y2=1
的左、右焦點F1,F2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(Ⅰ)求圓C的方程;
(Ⅱ)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1,F2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知F1,F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓C的離心率e=
1
2
,F1也是拋物線C1:y2=-4x的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
DF2
=
F2E
,點E關于x軸的對稱點為G,求直線GD的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1,F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點,P是雙曲線的上一點,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習冊答案