.(本題滿分12分)已知函數(shù)
(1)求時(shí)的取值范圍;
(2)若對(duì)任意成立;
(ⅰ)求證是等比數(shù)列;
(ⅱ)令,求證.

(1)解:由圖像知      ……………3分
(2)證明:(ⅰ)
所以,是以2為公比,為首項(xiàng)的等比數(shù)列。 ……7分
(ⅱ)由上知:
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232043250791460.png" style="vertical-align:middle;" />              …………10分
所以:                …………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{an}是首項(xiàng)a1=4,公比q≠1的等比數(shù)列,Sn是其前n項(xiàng)和,且4a1,a5,-2成等差數(shù)列.
(1)求公比q的值;   
(2)求Tn=a2+a4+a6+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
等比數(shù)列的各項(xiàng)均為正數(shù),成等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分14分)
已知數(shù)列,,其中是方程的兩個(gè)根.
(1)證明:對(duì)任意正整數(shù),都有;
(2)若數(shù)列中的項(xiàng)都是正整數(shù),試證明:任意相鄰兩項(xiàng)的最大公約數(shù)均為1;
(3)若,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列滿足,則       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為,且 
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,試比較的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列滿足,則該數(shù)列的前2011項(xiàng)的乘積=       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)若數(shù)列的前n 項(xiàng)和Sn滿足:Sn= 2an+1.
(1)求,,
(2)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

項(xiàng)數(shù)為n的數(shù)列的前k項(xiàng)和為,定義為該項(xiàng)數(shù)列的“凱森和”,如果項(xiàng)系數(shù)為99項(xiàng)的數(shù)列的“凱森和”為1000,那么項(xiàng)數(shù)為100的數(shù)列100,的“凱森和”為(   )
A.991B.1001C.1090D.1100

查看答案和解析>>

同步練習(xí)冊(cè)答案