【題目】中,,分別為內(nèi)角,,的對(duì)邊,且滿.

1)求的大小;

2)再在①,②,③這三個(gè)條件中,選出兩個(gè)使唯一確定的條件補(bǔ)充在下面的問題中,并解答問題.________,________,求的面積.

【答案】1;(2)見解析

【解析】

1)由題中條件,根據(jù)正弦定理,得到,再由余弦定理,即可求出結(jié)果;

2)方案一:選條件①和②,先由正弦定理求出,再由余弦定理,求出,進(jìn)而可求出三角形面積;方案二:選條件①和③,先由余弦定理求出,得到,進(jìn)而可求出三角形面積.

1)因?yàn)?/span>,

又由正弦定理,得

,

,

所以

因?yàn)?/span>,

所以.

2)方案一:選條件①和②.

由正弦定理,得.

由余弦定理,得

解得.

所以的面積.

方案二:選條件①和③.

由余弦定理,得

,所以.

所以,

所以的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華民族優(yōu)秀傳統(tǒng)文化,樹立正確的價(jià)值導(dǎo)向,落實(shí)立德樹人根本任務(wù),某市組織30000名高中學(xué)生進(jìn)行古典詩(shī)詞知識(shí)測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取100名學(xué)生,記錄他們的分?jǐn)?shù),整理所得頻率分布直方圖如圖:

)規(guī)定成績(jī)不低于60分為及格,不低于85分為優(yōu)秀,試估計(jì)此次測(cè)試的及格率及優(yōu)秀率;

)試估計(jì)此次測(cè)試學(xué)生成績(jī)的中位數(shù);

)已知樣本中有的男生分?jǐn)?shù)不低于80分,且樣本中分?jǐn)?shù)不低于80分的男女生人數(shù)相等,試估計(jì)參加本次測(cè)試30000名高中生中男生和女生的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)求實(shí)數(shù)的值,使得為奇函數(shù);

(2)若關(guān)于的方程有兩個(gè)不同實(shí)數(shù)解,求的取值范圍;

(3)若關(guān)于的不等式對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)的坐標(biāo)分別為,,直線相交于點(diǎn),且的斜率之差是1.

1)求點(diǎn)的軌跡的方程;

2)過軌跡上的點(diǎn),作圓的兩條切線,分別交軸于點(diǎn).當(dāng)的面積最小時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S-ABCD的底面為正方形,,ACBD交于EM,N分別為SD,SA的中點(diǎn),.

1)求證:平面平面SBD;

2)求直線BD與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)與雙曲線,)有相同的焦點(diǎn),點(diǎn)是兩條曲線的一個(gè)交點(diǎn),且軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動(dòng)型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動(dòng)型汽車牌照按50%增長(zhǎng),而燃油型汽車牌照每一年比上一年減少05萬張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.

1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;

2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?











查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,平面,的中點(diǎn).

)若的中點(diǎn),求證:平面平面;

)若,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機(jī)抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,

(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;

患傷風(fēng)感冒疾病

不患傷風(fēng)感冒疾病

合計(jì)

25

20

合計(jì)

100

(2)能否在犯錯(cuò)誤的概率不超過的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說明你的理由;

(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:

參考公式:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案