等比數(shù)列{an}中,“公比q>1”是“數(shù)列{an}單調(diào)遞增”的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也不必要條件
分析:根據(jù)等比數(shù)列遞增的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.
解答:解:若a1<0,q>1時,{an}遞減,∴數(shù)列{an}單調(diào)遞增不成立.
若數(shù)列{an}單調(diào)遞增,當(dāng)a1<0,0<q<1時,滿足{an}遞增,但q>1不成立.
∴“公比q>1”是“數(shù)列{an}單調(diào)遞增”的既不充分也不必要條件.
故選:D
點評:本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前n項和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步練習(xí)冊答案