已知動點的距離比它到軸的距離多一個單位.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作曲線的切線,求切線的方程,并求出與曲線軸所圍成圖形的面積

(Ⅰ)(Ⅱ)切線的方程為:,所求的圖形的面積為

解析試題分析:(Ⅰ)設(shè)動點M的坐標為,
依題意得:動點M到點的距離與它到直線的距離相等,
由拋物線定義知:M的軌跡C是以為焦點,直線為準線的拋物線,
其方程為:.                                                             ……6分
(Ⅱ)∵曲線C的方程可寫成:
注意到點在曲線C上,過點N的切線斜率為,
故所求的切線的方程為:.                                   ……9分
由定積分的幾何意義,所求的圖形的面積
.                                    ……13分
考點:本小題注意考查拋物線標準方程的求解,導數(shù)的運算,切線的求解和定積分的計算.
點評:解決軌跡方程問題時,經(jīng)常先根據(jù)定義求出曲線類型再求解,因此圓、橢圓、雙曲線、拋物線的定義尤其重要,要熟練掌握,靈活應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)已知直線與圓的交點為A、B,
(1)求弦長AB;
(2)求過A、B兩點且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
拋物線的焦點與雙曲線的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準線與雙曲線的漸近線圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)
已知點是拋物線上相異兩點,且滿足
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(。┤為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MAMBx軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右焦點。
(1)若是第一象限內(nèi)該橢圓上的一點,,求點P的坐標;
(2)設(shè)過定點M(0,2)的直線與橢圓交于不同的兩點A、B,且為銳角(其中為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,它的準線經(jīng)過雙曲線的一個焦點且垂直于的兩個焦點所在的軸,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程及其焦點的坐標;
(2)求雙曲線的方程及其離心率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,且過點(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.

查看答案和解析>>

同步練習冊答案