已知、分別是橢圓的左、右焦點(diǎn)。
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)P的坐標(biāo);
(2)設(shè)過定點(diǎn)M(0,2)的直線與橢圓交于不同的兩點(diǎn)A、B,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

(1);(2)。

解析試題分析:(1)因?yàn)闄E圓方程為,知,

設(shè),
,
,聯(lián)立 ,
解得,……6分
(2)顯然不滿足題意,可設(shè)的方程為,設(shè),
聯(lián)立 

且△
為銳角,,,


,,   
考點(diǎn):橢圓的性質(zhì);直線與橢圓的綜合應(yīng)用。
點(diǎn)評(píng):做本題的關(guān)鍵是把條件“為銳角”轉(zhuǎn)化為“”,即 “。在計(jì)算時(shí)一定要認(rèn)真、仔細(xì)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓的兩焦點(diǎn)是,離心率
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上,且,求DPF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知為坐標(biāo)原點(diǎn),點(diǎn)分別在軸上運(yùn)動(dòng),且=8,動(dòng)點(diǎn)滿足 =,設(shè)點(diǎn)的軌跡為曲線,定點(diǎn)為直線交曲線于另外一點(diǎn)
(1)求曲線的方程;
(2)求 面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)狱c(diǎn)的距離比它到軸的距離多一個(gè)單位.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)作曲線的切線,求切線的方程,并求出與曲線軸所圍成圖形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求下列各曲線的標(biāo)準(zhǔn)方程
(Ⅰ)實(shí)軸長為12,離心率為,焦點(diǎn)在x軸上的橢圓;
(Ⅱ)拋物線的焦點(diǎn)是雙曲線的左頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線:的焦點(diǎn)為,、是拋物線上異于坐標(biāo)原點(diǎn)的不同兩點(diǎn),拋物線在點(diǎn)處的切線分別為、,且,相交于點(diǎn).

(1) 求點(diǎn)的縱坐標(biāo); 
(2) 證明:、三點(diǎn)共線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,兩個(gè)定點(diǎn),的垂心H(三角形三條高線的交點(diǎn))是AB邊上高線CD的中點(diǎn)。
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)斜率為2的直線交動(dòng)點(diǎn)C的軌跡于P、Q兩點(diǎn),求面積的最大值(O是坐標(biāo)原點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線過點(diǎn)F交拋物線于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對(duì)于直線,m+n是否為定值?若是,求出m+n的值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知拋物線上一動(dòng)點(diǎn),拋物線內(nèi)一點(diǎn),為焦點(diǎn)且的最小值為。
求拋物線方程以及使得|PA|+|PF|最小時(shí)的P點(diǎn)坐標(biāo);
過(1)中的P點(diǎn)作兩條互相垂直的直線與拋物線分別交于C、D兩點(diǎn),直線CD是否過一定點(diǎn)? 若是,求出該定點(diǎn)坐標(biāo); 若不是,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案