【題目】已知定義域為R的奇函數(shù),滿足,則下列敘述正確的為(

①存在實數(shù)k,使關(guān)于x的方程7個不相等的實數(shù)根

②當(dāng)時,恒有

③若當(dāng)時,的最小值為1,則

④若關(guān)于的方程的所有實數(shù)根之和為零,則

A.①②③B.①③C.②④D.①②③④

【答案】B

【解析】

對于①,當(dāng)時,直線與函數(shù)在第一象限有3個零點,關(guān)于x的方程7個不相等的實數(shù)根,所以①正確;

對于②,當(dāng)時,函數(shù)不是單調(diào)函數(shù),所以②不正確;

對于③,令所以,則,所以③正確;

對于④,通過數(shù)形結(jié)合分析得到其是錯誤的.

對于①,函數(shù)的圖象如圖所示,由于函數(shù)是奇函數(shù),所以只要考查的零點個數(shù),

由于,所以只要考慮的零點有3個即可.

由題得,所以直線的斜率為,此時直線與函數(shù)的圖象有5個交點,當(dāng)時,直線與函數(shù)在第一象限有3個零點,關(guān)于x的方程7個不相等的實數(shù)根,所以①正確;

對于②,當(dāng)時,函數(shù)不是單調(diào)函數(shù),所以不成立,所以②不正確;

對于③,令所以,當(dāng)時,的最小值為1,則,所以③正確;

對于④,由于函數(shù)是奇函數(shù),關(guān)于的方程的所有實數(shù)根之和為零,

當(dāng)時,有三個實根,

,

所以的所有實數(shù)根之和為.

所以錯誤.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,橢圓上的點到其左焦點的最大距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓左焦點的直線與橢圓交于兩點,直線,過點作直線的垂線與直線交于點,求的最小值和此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,,平面,,F,G分別是的中點.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了對某種商品進(jìn)行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關(guān)系,對近個月的月銷售量和月銷售單價數(shù)據(jù)進(jìn)行了統(tǒng)計分析,得到一組檢測數(shù)據(jù)如表所示:

月銷售單價(元/件)

月銷售量(萬件)

1)若用線性回歸模型擬合之間的關(guān)系,現(xiàn)有甲、乙、丙三位實習(xí)員工求得回歸直線方程分別為:,,其中有且僅有一位實習(xí)員工的計算結(jié)果是正確的.請結(jié)合統(tǒng)計學(xué)的相關(guān)知識,判斷哪位實習(xí)員工的計算結(jié)果是正確的,并說明理由;

2)若用模型擬合之間的關(guān)系,可得回歸方程為,經(jīng)計算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為,請用說明哪個回歸模型的擬合效果更好;

3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當(dāng)月銷售單價為何值時,商品的月銷售額預(yù)報值最大?(精確到

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角,,的對邊分別為,,,.設(shè)為線段上一點,,有下列條件:

;②;③.

請從以上三個條件中任選兩個,求的大小和的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察某動物疫苗預(yù)防某種疾病的效果,現(xiàn)對200只動物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):

未發(fā)病

發(fā)病

合計

未注射疫苗

20

60

80

注射疫苗

80

40

120

合計

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

則下列說法正確的:(

A.至少有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

B.至多有99%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

C.至多有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

D.“發(fā)病與沒接種疫苗有關(guān)”的錯誤率至少有0.01%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為菱形, ,H為上的點,過的平面分別交于點,且平面

(1)證明: ;

(2)當(dāng)的中點, ,與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的最小值;

2)設(shè),討論函數(shù)的單調(diào)性;

3)斜率為的直線與曲線交于兩點,

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機(jī)變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認(rèn)為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案