已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5

(1)求實(shí)數(shù)a,b的值;
(2)用定義證明:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.
分析:(1)利用函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5
,可得f(-
1
2
)=-f(
1
2
)=-
2
5
,從而得到關(guān)于a、b的方程組,解之即可;
(2)利用單調(diào)性的定義即可證明;
(3)利用f(x)為奇函數(shù),將不等式f(t-1)+f(t)<0轉(zhuǎn)化為f(t)<-f(t-1)=f(1-t),再利用函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù)得到關(guān)于t的不等式 組,解之即可.
解答:解:(1)∵f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
a
2
+b
1+(
1
2
)
2
=
2
5

f(-
1
2
)=
-
a
2
+b
1+(-
1
2
)
2
=-f(
1
2
)=-
2
5
,解得:a=1,b=0.
f(x)=
x
1+x2

(2)證明:在區(qū)間(-1,1)上任取x1,x2,令-1<x1<x2<1,f(x1)-f(x2)=
x1
1+x12
-
x2
1+x22
=
x1(1+x22)-x2(1+x12)
(1+x12)(1+x22)
=
(x1-x2)(1-x1x2)
(1+x12)(1+x22)

∵-1<x1<x2<1
∴x1-x2<0,1-x1x2>0,(1+x12)>0,(1+x22)>0
∴f(x1)-f(x2)<0即f(x1)<f(x2
故函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù).
(3)∵f(t-1)+f(t)<0
∴f(t)<-f(t-1)=f(1-t)
∵函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù)
t<1-t
-1<t<1
-1<1-t<1

0<t<
1
2

故關(guān)于t的不等式的解集為(0,
1
2
)
點(diǎn)評(píng):本題考查函數(shù)奇偶性與單調(diào)性的性質(zhì)應(yīng)用,著重考查學(xué)生理解函數(shù)奇偶性與用定義證明單調(diào)性及解方程,解不等式組的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
x2+1
為奇函數(shù).且f(
1
2
)=
2
5

(1)、求實(shí)數(shù)a、b的值.
(2)、求證:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù).
(3)、解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1、1)上的函數(shù)f(x)=
mx+n
x2+1
為奇函數(shù).且f(
1
2
)=
2
5

(1)、求實(shí)數(shù)m、n的值.
(2)、解關(guān)于 t 的不等式f(t-1)+f(t-2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(I)計(jì)算:0.25×(-
1
2
)-1-4÷(
5
-1)0-(
1
27
)-
1
3
+lg25+2lg2
;
(II)已知定義在區(qū)間(-1,1)上的奇函數(shù)f(x)單調(diào)遞增.解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1,1)上的偶函數(shù)f(x),在(0,1)上為增函數(shù),f(a-2)-f(4-a2)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案