【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出直線的普通方程以及曲線的極坐標(biāo)方程;
(2)若直線與曲線的兩個交點分別為,直線與軸的交點為,求的值.
【答案】(1),;(2)1.
【解析】分析:(1)消去參數(shù)t可得直線l的普通方程為x+y-1=0.曲線C的直角坐標(biāo)方程為x2+y2-4y=0.化為極坐標(biāo)即ρ=4sin θ.
(2)聯(lián)立直線參數(shù)方程與圓的一般方程可得t2-3t+1=0,結(jié)合直線參數(shù)的幾何意義可得|PM|·|PN|=|t1·t2|=1.
詳解:(1)直線l的參數(shù)方程為(為參數(shù)),
消去參數(shù)t,得x+y-1=0.
曲線C的參數(shù)方程為 (θ為參數(shù)),
利用平方關(guān)系,得x2+(y-2)2=4,則x2+y2-4y=0.
令ρ2=x2+y2,y=ρsin θ,代入得C的極坐標(biāo)方程為ρ=4sin θ.
(2)在直線x+y-1=0中,令y=0,得點P(1,0).
把直線l的參數(shù)方程代入圓C的方程得t2-3t+1=0,
∴t1+t2=3,t1t2=1.
由直線參數(shù)方程的幾何意義,|PM|·|PN|=|t1·t2|=1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)為何值時,.①有且僅有一個零點;②有兩個零點且均比-1大;
(2)若函數(shù)有4個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是增函數(shù),則的取值范圍是( 。
A. B. C. D.
【答案】C
【解析】
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),
則當(dāng)x∈[2,+∞)時,
x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點睛】
本題考查的知識點是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
10
【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)1卷)已知橢圓E的中心為坐標(biāo)原點,離心率為 , E的右焦點與拋物線C:y2=8x的焦點重合,A,B是C的準(zhǔn)線與E的兩個交點,則|AB|= ( )
A.3
B.6
C.9
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某旅游區(qū)各景點的分布圖,圖中一條帶箭頭的線段表示一段有方向的路,試計算順著箭頭方向,從A到H不同的旅游路線的條數(shù),這個數(shù)是( )
A. 15 B. 16 C. 17 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝店為慶祝開業(yè)“三周年”,舉行為期六天的促銷活動,規(guī)定消費達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,第五天該服裝店經(jīng)理對前五天中參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若與具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)預(yù)測第六天的參加抽獎活動的人數(shù)(按四舍五入取到整數(shù)).
參考公式與參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市出租車的計價標(biāo)準(zhǔn)是:4km以內(nèi)(含4km)10元,超過4km且不超過18km的部分1.2元/km,超過18km的部分1.8元/km,不計等待時間的費用.
(1)如果某人乘車行駛了10km,他要付多少車費?
(2)試建立車費y(元)與行車?yán)锍?/span>x(km)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求過兩點A(1,4)、B(3,2),且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點M1(2,3),M2(2,4)與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com