【題目】支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.有下列四個(gè)命題:
:恰有四支球隊(duì)并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;
:每支球隊(duì)都既有勝又有敗的概率為; :五支球隊(duì)成績(jī)并列第一名的概率為.
其中真命題是
A. ,, B. ,, C. .. D. ..
【答案】A
【解析】支球隊(duì)單循環(huán),共舉行場(chǎng)比賽,共有次勝次負(fù).由于以獲勝場(chǎng)次數(shù)作為球隊(duì)的成績(jī).就算四支球隊(duì)都勝場(chǎng),則第五支球隊(duì)也無(wú)法勝場(chǎng),若四支球隊(duì)都勝場(chǎng),則第五支球隊(duì)也勝場(chǎng),五支球隊(duì)并列第一,除此不會(huì)再有四支球隊(duì)勝場(chǎng)次數(shù)相同.故是真命題;會(huì)出現(xiàn)兩支球隊(duì)勝場(chǎng),剩下三支球隊(duì)中兩支球隊(duì)各勝場(chǎng),另一支球隊(duì)勝場(chǎng)的情況,此時(shí)兩支球隊(duì)并列第一名.故為真命題;由題可知球隊(duì)成績(jī)并列第一名,各勝一場(chǎng)的概率為小于.排除.故本題答案選.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求越來(lái)越高,某機(jī)構(gòu)為了解公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查人,并將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) | |||||
頻數(shù) | |||||
贊成人數(shù) |
(1)世界聯(lián)合國(guó)衛(wèi)生組織規(guī)定: 歲為青年, 為中年,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)以下列聯(lián)表:
青年人 | 中年人 | 合計(jì) | |
不贊成 | |||
贊成 | |||
合計(jì) |
(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為贊成“車柄限行”與年齡有關(guān)?
附: ,其中
獨(dú)立檢驗(yàn)臨界值表:
(3)若從年齡的被調(diào)查中各隨機(jī)選取人進(jìn)行調(diào)查,設(shè)選中的兩人中持不贊成“車輛限行”態(tài)度的人員為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+)(A,ω,是常數(shù),A>0,ω>0)的部分圖象如圖所示,下列結(jié)論: ①最小正周期為π;
②將f(x)的圖象向左平移 個(gè)單位,所得到的函數(shù)是偶函數(shù);
③f(0)=1;
④ ;
⑤ .
其中正確的是( )
A.①②③
B.②③④
C.①④⑤
D.②③⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1
(Ⅰ)設(shè)集合P={1,2,3},集合Q={﹣1,1,2,3,4},從集合P中隨機(jī)取一個(gè)數(shù)作為a,從集合Q中隨機(jī)取一個(gè)數(shù)作為b,求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(Ⅱ)設(shè)點(diǎn)(a,b)是區(qū)域 內(nèi)的隨機(jī)點(diǎn),求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C方程為 (a>b>0),左、右焦點(diǎn)分別是F1 , F2 , 若橢圓C上的點(diǎn)P(1, )到F1 , F2的距離和等于4. (Ⅰ)寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)Q是橢圓C的動(dòng)點(diǎn),求線段F1Q中點(diǎn)T的軌跡方程;
(Ⅲ)直線l過(guò)定點(diǎn)M(0,2),且與橢圓C交于不同的兩點(diǎn)A,B,若∠AOB為銳角(O為坐標(biāo)原點(diǎn)),求直線l的斜率k0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx﹣2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y﹣4=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m;
(3)在(2)的條件下,求以MN為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+2)+loga(3﹣x),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com