已知f(x)=x2+2xf′(1),則f′(0)等于( 。
A.0B.-4C.-2D.2
由f(x)=x2+2xf′(1),
得:f′(x)=2x+2f′(1),
取x=1得:f′(1)=2×1+2f′(1),
所以,f′(1)=-2.
故f′(0)=2f′(1)=-4,
故答案為:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)若時(shí)有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)函數(shù)
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實(shí)數(shù)a,使得關(guān)于x的不等式的解集為(0,+)?若存在,求a的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)為f(x)的導(dǎo)函數(shù),已知函數(shù)y=f′(x)的圖象如圖所示.若正數(shù)a,b滿足f(2a+b)<1,則
a+2
b+2
的取值范圍是( 。
A.(
1
3
,2)
B.(-∞,
1
2
)∪(3,+∞)
C.(
1
2
,3)
D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

y=sin(3-4x),則y′=( 。
A.-sin(3-4x)B.3-cos(-4x)C.4cos(3-4x)D.-4cos(3-4x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四組函數(shù)中,導(dǎo)數(shù)相等的是( 。
A.f(x)=1與f(x)=xB.f(x)=sinx與f(x)=cosx
C.f(x)=sinx與f(x)=-cosxD.f(x)=x-1與f(x)=x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為( 。
A.(-2,0)B.(-∞,-2)∪(-1,0)C.(-∞,-2)∪(0,+∞)D.(-2,-1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=2sinx的導(dǎo)數(shù)y′=( 。
A.2cosxB.-2cosxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(x)=sinα一cosα,則f′(α)等于( 。
A.cosαB.sinαC.sinα+cosαD.2sinα

查看答案和解析>>

同步練習(xí)冊(cè)答案