【題目】設(shè)函數(shù)f(x)=xln(x﹣1)﹣a(x﹣2).
(Ⅰ)若a=2017,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若當(dāng)x≥2時(shí),f(x)≥0,求a的取值范圍.

【答案】解:(Ⅰ)a=2017時(shí),f(x)=xln(x﹣1)﹣2017(x﹣2),
則f′(x)=ln(x﹣1)+ ﹣2017,故f′(2)=﹣2015,
又f(2)=0,
故切線方程是:y﹣0=﹣2015(x﹣2),
即2015x+y﹣4030=0;
(Ⅱ)由f(x)≥0得xln(x﹣1)﹣a(x﹣2)≥0,而x≥2,
故ln(x﹣1)﹣ ≥0,
設(shè)函數(shù)g(x)=ln(x﹣1)﹣ ,(x≥2),
于是問題轉(zhuǎn)化為g(x)≥0對任意的x≥2恒成立,
注意到g(2)=0,故若g′(x)≥0,則g(x)遞增,
從而g(x)≥g(2)=0,而g′(x)= ,
∴g′(x)≥0等價(jià)于x2﹣2a(x﹣1)≥0,
分離參數(shù)得a≤ = [(x﹣1)+ +2],
由均值不等式得 [(x﹣1)+ +2]≥2,
當(dāng)且僅當(dāng)x=2時(shí)取“=”成立,于是a≤2,
當(dāng)a>2時(shí),設(shè)h(x)=x2﹣2a(x﹣1),
∵h(yuǎn)(2)=4﹣2a=2(2﹣a)>0,
又拋物線h(x)=x2﹣2a(x﹣1)開口向上,
故h(x)=x2﹣2a(x﹣1)有2個(gè)零點(diǎn),
設(shè)兩個(gè)零點(diǎn)為x1 , x2 , 則x1<2<x2 ,
于是x∈(2,x2)時(shí),h(x)<0,故g′(x)<0,g(x)遞減,
故g(x)<g(2)=0,與題設(shè)矛盾,不合題意,
綜上,a的范圍是(﹣∞,2].
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(2),f′(2),求出切線方程即可;(Ⅱ)設(shè)函數(shù)g(x)=ln(x﹣1)﹣ ,(x≥2),于是問題轉(zhuǎn)化為g(x)≥0對任意的x≥2恒成立,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).

1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;

3)設(shè)是圓上的兩個(gè)動點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)關(guān)于軸的對稱點(diǎn)為,如果直線軸分別交于,問是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,梯形中,,,, ,將沿對角線折起.設(shè)折起后點(diǎn)的位置為,并且平面 平面.給出下面四個(gè)命題:

;②三棱錐的體積為;③ 平面;

平面平面.其中正確命題的序號是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)過原點(diǎn)作曲線的切線,求直線的方程;

(Ⅱ)個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(滿分12分)學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如下:


損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計(jì)

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

總 計(jì)

80

320

400

)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

)請說明是否有975%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?

參考公式:

PK2≥k0

005

0025

0010

0005

0001

k0

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一直一艘船由島以海里/小時(shí)的速度往北偏東島形式,計(jì)劃到達(dá)島后停留分鐘后繼續(xù)以相同的速度駛往島.島在島的北偏西的方向上,島也也在島的北偏西的方向上.上午時(shí)整,該船從島出發(fā).上午時(shí)分,該船到達(dá)處,此時(shí)測得島在北偏西的方向上.如果一切正常,此船何時(shí)能到達(dá)島?(精確到分鐘)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在汶川大地震后對唐家山堰塞湖的搶險(xiǎn)過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個(gè)巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨(dú)立的,且命中的概率都是
(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ.求ξ的分布列及數(shù)學(xué)期望E(ξ).( 結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三()班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.

(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù),并估計(jì)該班的平均分?jǐn)?shù);

(2)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:

天數(shù)

1

1

1

2

2

1

2

用水量/噸

22

38

40

41

44

50

95

(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?

(Ⅱ)你認(rèn)為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個(gè)數(shù)來描述該公司每天的用水量?

查看答案和解析>>

同步練習(xí)冊答案