【題目】“把你的心我的心串一串,串一株幸運(yùn)草串一個(gè)同心圓…”一位數(shù)學(xué)老師一這句歌詞為靈感構(gòu)造了一道名為《愛(ài)2017》的題目,請(qǐng)你解答此題:設(shè)O為坐標(biāo)原點(diǎn),直線l與圓C1:x2+y2=1相切且與圓C2:x2+y2=r2(r>1)相交于A、B兩不同點(diǎn),已知E(x1,y1)、F(x2,y2)分別是圓C1、圓C2上的點(diǎn).
(1)求r的值;
(2)求△OEF面積的最大值;
(3)若△OEF的外接圓圓心P在圓C1上,已知點(diǎn)D(3,0),求|DE|2+|DF|2的取值范圍.
【答案】(1)r=2;(2)1;(3)[23﹣6,23+6].
【解析】試題分析:(1)直線l與圓C1:x2+y2=1相切的切點(diǎn)P是弦AB的中點(diǎn),利用勾股定理,可得r的值;(2)當(dāng)OE⊥OF時(shí),△OEF面積取最大值;(3)△OEF的外接圓圓心P在圓C1上,則△OEF的外接圓與C2內(nèi)切,且∠EOP=60°,不妨令P(cosα,sinα),則F(2cosα,2sinα),E(cos(α+60°),sin(α+60°)),結(jié)合點(diǎn)D(3,0),利用向量法結(jié)合三角函數(shù),求出|DE|2+|DF|2的取值范圍.
試題解析:
(1)如圖所示,直線l與圓C1:x2+y2=1相切的切點(diǎn)P是弦AB的中點(diǎn),
且OP⊥AB,AB=2AP=2,解得r=2;
(2)△OEF的面積S=|OE|×|OF|sin∠EOF,
故當(dāng)OE⊥OF時(shí),△OEF面積的最大值為:S=|OE|×|OF|=×1×2=1;
(3)△OEF的外接圓圓心P在圓C1上,
即PE=PF=PO=1,
則△OEF的外接圓與C2內(nèi)切,且∠EOP=60°,
不妨令P(cosα,sinα),則F(2cosα,2sinα),E(cos(α+60°),sin(α+60°)),
∵點(diǎn)D(3,0),
∴=(cos(α+60°)﹣3,sin(α+60°)),=(2cosα﹣3,2sinα),
|DE|2+|DF|2=[cos(α+60°)﹣3]2+sin2(α+60°)+(2cosα﹣3)2+(2sinα)2
=23﹣15cosα+3sinα
=6sin(α﹣φ)+23,其中tanφ=,
故|DE|2+|DF|2的取值范圍為[23﹣6,23+6]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)的極值;
(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.
【答案】(1);(2)當(dāng)時(shí), 恒成立, 不存在極值.當(dāng)時(shí),
有極小值無(wú)極大值.(3).
【解析】試題分析:
(1)當(dāng)時(shí),求得,得到的值,即可求解切線方程.
(2)由定義域?yàn)?/span>,求得,分和時(shí)分類討論得出函數(shù)的單調(diào)區(qū)間,即可求解函數(shù)的極值.
(3)根據(jù)題意在上遞增,得對(duì)恒成立,進(jìn)而求解實(shí)數(shù)的取值范圍.
試題解析:
(1)當(dāng)時(shí), , ,
,又,∴切線方程為.
(2)定義域?yàn)?/span>, ,當(dāng)時(shí), 恒成立, 不存在極值.
當(dāng)時(shí),令,得,當(dāng)時(shí), ;當(dāng)時(shí), ,
所以當(dāng)時(shí), 有極小值無(wú)極大值.
(3)∵在上遞增,∴對(duì)恒成立,即恒成立,∴.
點(diǎn)睛:導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),所以在歷屆高考中,對(duì)導(dǎo)數(shù)的應(yīng)用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來(lái)看,對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行: (1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系. (2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù). (3)考查數(shù)形結(jié)合思想的應(yīng)用.
【題型】解答題
【結(jié)束】
22
【題目】已知圓: 和點(diǎn), 是圓上任意一點(diǎn),線段的垂直平分線和相交于點(diǎn), 的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn)是曲線與軸正半軸的交點(diǎn),直線交于、兩點(diǎn),直線, 的斜率分別是, ,若,求:①的值;②面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)求C1 , C2的極坐標(biāo)方程;
(2)射線 與C1的異于原點(diǎn)的交點(diǎn)為A,與C2的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別是DD1、DB的中點(diǎn),求證:
(1)EF∥平面ABC1D1;
(2)EF⊥B1C
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過(guò)種植紫甘薯來(lái)提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2018年種植的一批試驗(yàn)紫甘薯在不同溫度時(shí)6組死亡的株數(shù):
溫度(單位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡數(shù)(單位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算:,,,.
其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù),.
(1)與是否有較強(qiáng)的線性相關(guān)性? 請(qǐng)計(jì)算相關(guān)系數(shù)(精確到)說(shuō)明.
(2)并求關(guān)于的回歸方程(和都精確到);
(3)用(2)中的線性回歸模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).
附:對(duì)于一組數(shù)據(jù),,……,,
①線性相關(guān)系數(shù),通常情況下當(dāng)大于0.8時(shí),認(rèn)為兩
個(gè)變量有很強(qiáng)的線性相關(guān)性.
②其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平直角坐標(biāo)系中,已知點(diǎn),
(1)在軸的正半軸上求一點(diǎn),使得以為直徑的圓過(guò)點(diǎn),并求該圓的方程;
(2)在(1)的條件下,點(diǎn)在線段內(nèi),且平分,試求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com