【題目】已知橢圓的上、下、左、右四個(gè)頂點(diǎn)分別為x軸正半軸上的某點(diǎn)滿足.

(1)求橢圓的方程;

(2)設(shè)該橢圓的左、右焦點(diǎn)分別為,點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長(zhǎng)是定值.

【答案】(1) (2)見解析

【解析】試題分析:

(1) 設(shè)點(diǎn)的坐標(biāo)為可知,可得橢圓方程;(2)法一:設(shè),結(jié)合橢圓方程可得,在圓中, 是切點(diǎn), ,同理可得,則易得結(jié)論;法二:設(shè) 的方程為,聯(lián)立橢圓方程,由根與系數(shù)的關(guān)系式,結(jié)合弦長(zhǎng)公式求出,再求出,則結(jié)論易得.

試題解析:

(1)設(shè)點(diǎn)G的坐標(biāo)為,可知,

.

因此橢圓的方程是.

(2)方法1:設(shè),,

=,

,,

在圓中, 是切點(diǎn),

==,

,

同理,,

因此的周長(zhǎng)是定值

方法2:設(shè)的方程為,

,,

設(shè),,

==

=

,

與圓相切,,,

,

,

,,

同理可得,

,

因此的周長(zhǎng)是定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一直角邊為股,斜邊為弦.若ab,c為直角三角形的三邊,其中c為斜邊,則a2b2c2,稱這個(gè)定理為勾股定理.現(xiàn)將這一定理推廣到立體幾何中:在四面體OABC中,∠AOBBOCCOA90°,S為頂點(diǎn)O所對(duì)面的面積,S1,S2S3分別為側(cè)面OAB,OAC,OBC的面積,則下列選項(xiàng)中對(duì)于S,S1S2,S3滿足的關(guān)系描述正確的為(  )

A. S2SSS B.

C. SS1S2S3 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.

組別

分組

頻數(shù)

頻率

1

[50,60)

8

0.16

2

[60,70)

a

3

[7080)

20

0.40

4

[80,90)

0.08

5

[90100]

2

b

合計(jì)

(1)求出a,b的值;

(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(80)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).

①求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;

②求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是圓內(nèi)的一個(gè)定點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)點(diǎn), ,直線軸交于點(diǎn),直線軸交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角AB,C的對(duì)邊分別為a,bc,已知2cosCacosB+bcosA=c

)求C;()若c=,ABC的面積為,求ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象上一點(diǎn)處的切線方程為.

(1)求的值;

(2)若方程內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中

為自然對(duì)數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列, , 期待數(shù)列

.

)分別寫出一個(gè)單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.

)記期待數(shù)列的前項(xiàng)和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)輸公司接受了向一地區(qū)每天至少運(yùn)送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費(fèi)用為A型卡車320元,B型卡車504元,則公司如何調(diào)配車輛,才能使公司所花的費(fèi)用最低,最低費(fèi)用為________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)ex(ln xa)(e是自然對(duì)數(shù)的底數(shù),

e2.71 828).

(1)yf(x)x1處的切線方程為y2exb,求ab的值.

(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案