【題目】已知橢圓的離心率為,過焦點且垂直于軸的直線被橢圓所截得的弦長為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若經(jīng)過點的直線與橢圓交于不同的兩點是坐標(biāo)原點,求的取值范圍.

【答案】12

【解析】

1)根據(jù)離心率以及弦長,結(jié)合,可知,可得結(jié)果.

2)假設(shè)點坐標(biāo),根據(jù)斜率存在與否假設(shè)直線方程,并與橢圓方程聯(lián)立,使用韋達(dá)定理,表示出,結(jié)合不等式,可得結(jié)果.

解:(1)設(shè)橢圓的半焦距為.

因為過焦點且垂直于軸的直線交橢圓

所得的弦長為,所以,

①因為橢圓的離心率為,

所以

由①②③,解得.

故橢圓的標(biāo)準(zhǔn)方程是.

2)當(dāng)直線的斜率不存在時,

直線的方程為,聯(lián)立

解得

則點的坐標(biāo)分別為

,.

所以

;

當(dāng)直線的斜率存在時,

設(shè)直線的方程為.

聯(lián)立消去

因為點在橢圓的內(nèi)部,

所以直線與橢圓一定有兩個不同的交點.

.

所以

化簡可得

化簡可得.

因為,所以,

所以,所以.

所以,

,所以.

綜上,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強(qiáng)起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱強(qiáng)軍利刃”“強(qiáng)國之盾,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有10位外國人,其中關(guān)注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行文藝比賽,并通過網(wǎng)絡(luò)對比賽進(jìn)行直播.比賽現(xiàn)場有5名專家評委給每位參賽選手評分,場外觀眾可以通過網(wǎng)絡(luò)給每位參賽選手評分.每位選手的最終得分由專家評分和觀眾評分確定.某選手參與比賽后,現(xiàn)場專家評分情況如表;場外有數(shù)萬名觀眾參與評分,將評分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:

專家

A

B

C

D

E

評分

9.6

9.5

9.6

8.9

9.7

(1)求a的值,并用頻率估計概率,估計某場外觀眾評分不小于9的概率;

(2)從5名專家中隨機(jī)選取3人,X表示評分不小于9分的人數(shù);從場外觀眾中隨機(jī)選取3人,用頻率估計概率,Y表示評分不小于9分的人數(shù);試求E(X)與E(Y)的值;

(3)考慮以下兩種方案來確定該選手的最終得分:方案一:用所有專家與觀眾的評分的平均數(shù)作為該選手的最終得分,方案二:分別計算專家評分的平均數(shù)和觀眾評分的平均數(shù),用作為該選手最終得分.請直接寫出的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,1423,36,54,則該數(shù)列的第19項為( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓柱底面半徑為1,高為,是圓柱的一個軸截面,動點從點出發(fā)沿著圓柱的側(cè)面到達(dá)點,其距離最短時在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時針旋轉(zhuǎn)后,邊與曲線相交于點.

1)求曲線的長度;

2)當(dāng)時,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線與直線垂直.

1)求的單調(diào)區(qū)間;

2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)設(shè)點在曲線上,直線交曲線于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點在拋物線 上,直線 與拋物線交于 兩點,且直線, 的斜率之和為-1.

(1)求的值;

(2)若,設(shè)直線軸交于點,延長與拋物線交于點,拋物線在點處的切線為,記直線, 軸圍成的三角形面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

同步練習(xí)冊答案