【題目】直線l:kx+y+4=0(k∈R)是圓C:x2+y2+4x﹣4y+6=0的一條對(duì)稱軸,過點(diǎn)A(0,k)作斜率為1的直線m,則直線m被圓C所截得的弦長(zhǎng)為(
A.
B.
C.
D.2

【答案】C
【解析】解:∵圓C:x2+y2+4x﹣4y+6=0,即(x+2)2+(y﹣2)2 =2,

表示以C(﹣2,2)為圓心、半徑等于 的圓.

由題意可得,直線l:kx+y+4=0經(jīng)過圓C的圓心(﹣2,2),

故有﹣2k+2+4=0,∴k=3,點(diǎn)A(0,3).

直線m:y=x+3,圓心到直線的距離d= = ,

∴直線m被圓C所截得的弦長(zhǎng)為2 =

故選:C.

【考點(diǎn)精析】利用直線與圓的三種位置關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1Cl中,M,N分別為CC1 , A1B1的中點(diǎn).
(I)證明:直線MN∥平面CAB1;
(II)BA=BC=BB1 , CA=CB1 , CA⊥CB1 , ∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(Ⅰ)討論函數(shù)f(x)= ex的單調(diào)性,并證明當(dāng)x>0時(shí),(x﹣2)ex+x+2>0;
(Ⅱ)證明:當(dāng)a∈[0,1)時(shí),函數(shù)g(x)= (x>0)有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,設(shè)圓的方程為(x+2 2+y2=48,F(xiàn)1是圓心,F(xiàn)2(2 ,0)是圓內(nèi)一點(diǎn),E為圓周上任一點(diǎn),線EF2的垂直平分線EF1的連線交于P點(diǎn),設(shè)動(dòng)點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l(與x軸不重合)與曲線C交于A、B兩點(diǎn),與x軸交于點(diǎn)M.
(i)是否存在定點(diǎn)M,使得 + 為定值,若存在,求出點(diǎn)M坐標(biāo)及定值;若不存在,請(qǐng)說明理由;
(ii)在滿足(i)的條件下,連接并延長(zhǎng)AO交曲線C于點(diǎn)Q,試求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有60%的把握認(rèn)為“古文迷”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“古文迷”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.
參考公式:K2= ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+2ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對(duì)于任意x≥0,f(x)≥ex恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知(2x2+x﹣y)n的展開式中各項(xiàng)系數(shù)的和為32,則展開式中x5y2的系數(shù)為 . (用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為 ,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為 ,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問:他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= 當(dāng)x∈[﹣ , ]時(shí),恒有f(x+a)<f(x),則實(shí)數(shù)a的取值范圍是(
A.(
B.(﹣1,
C.( ,0)
D.( ,﹣ ]

查看答案和解析>>

同步練習(xí)冊(cè)答案